Skip to main content
Log in

Effects of dc bias on dielectric relaxations in CaCu3Ti4O12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Effects of dc bias on dielectric relaxations in CaCu3Ti4O12 ceramics were investigated via an improved dielectric spectroscopy. A new low-frequency dielectric relaxation, which was assigned to space charge polarization, was found shifting towards higher frequency with increasing bias voltage in the improved spectra. It was suggested that the Schottky barrier at grain boundary was lowered under dc bias resulting in higher possibility for carriers to migrate. Therefore, the relaxation time was decreased, which was in accordance with rightward shift of this relaxation under increased dc bias. In addition, dependence of the widely reported high-frequency relaxation (> 105 Hz) and middle-frequency relaxation (103–105 Hz) on bias voltage was also discussed. Permittivity contributed by either high-frequency or middle-frequency relaxation presented inverse dependence on dc bias. Discrepancy on barrier parameters was obtained assuming both of them physically correlated with the barrier at grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  Google Scholar 

  2. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217 (2000)

    Article  Google Scholar 

  3. O. Auciello, J.F. Scott, R. Ramesh, M.S. Division, U.O.N.S. Wales, U.O. Maryland, The Physics of Ferroelectric and High Dielectric Constant Memories. (ER, New York, 1998)

  4. S.Y. Chung, I.D. Kim, S.J. Kang, Nat. Mater. 3, 774 (2004)

    Article  Google Scholar 

  5. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  Google Scholar 

  6. P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Mater. Sci. 23, 795 (2012)

    Google Scholar 

  7. K. Prompa, E. Swatsitang, T. Putjuso, J. Mater. Sci. 28, 15033 (2017)

    Google Scholar 

  8. M. Sahu, R.N.P. Choudhary, S.K. Das, S. Otta, B.K. Roul, J. Mater. Sci. 28, 15676 (2017)

    Google Scholar 

  9. K. Wu, Y. Huang, J. Li, S. Li, Appl. Phys. Lett. 111, 42902 (2017)

    Article  Google Scholar 

  10. H. Wang, S. Li, J. He, C. Lin, J. Mater. Sci. 25, 1842 (2014)

    Google Scholar 

  11. L.X. He, J.B. Neaton, M.H. Cohen, D. Vanderbilt, C.C. Homes, Phys. Rev. B 65, 214112 (2002)

    Article  Google Scholar 

  12. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)

    Article  Google Scholar 

  13. M.F. Ab Rahman, S.D. Hutagalung, Z.A. Ahmad, M.F. Ain, J.J. Mohamed, J. Mater. Sci. 26, 3947 (2015)

    Google Scholar 

  14. T. Fang, W. Lin, C. Lin, Phys. Rev. B 76, 045115 (2007)

    Article  Google Scholar 

  15. L. Wu, Y. Zhu, S. Park, S. Shapiro, G. Shirane, J. Tafto, Phys. Rev. B 71, 014118 (2005)

    Article  Google Scholar 

  16. C.C. Wang, L.W. Zhang, Appl. Phys. Lett. 88, 042906 (2006)

    Article  Google Scholar 

  17. T. Fang, H. Chung, S. Liou, J. Appl. Phys. 106, 054106 (2009)

    Article  Google Scholar 

  18. L. Zhang, Appl. Phys. Lett. 87, 022907 (2005)

    Article  Google Scholar 

  19. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B Condens. Matter. 49, 7868 (1994)

    Article  Google Scholar 

  20. J. Boonlakhorn, P. Kidkhunthod, N. Chanlek, P. Thongbai, J. Mater. Sci. 28, 4695 (2016)

    Google Scholar 

  21. M. Li, X.L. Chen, D.F. Zhang, Q. Liu, C.X. Li, Ceram. Int. 41, 14854 (2015)

    Article  Google Scholar 

  22. J. Yang, C.P. Yang, X.J. Luo, D.W. Shi, H.B. Xiao, L.F. Xu, K. Bärner, Ceram. Int. 42, 10866 (2016)

    Article  Google Scholar 

  23. I. Kim, A. Rothschild, H.L. Tuller, Appl. Phys. Lett. 88, 72902 (2006)

    Article  Google Scholar 

  24. K. Mukae, K. Tsuda, I. Nagasawa, J. Appl. Phys. 50, 4475 (1979)

    Article  Google Scholar 

  25. T. Fang, L. Mei, H. Ho, Acta Mater. 54, 2867 (2006)

    Article  Google Scholar 

  26. G. Blatter, F. Greuter, Phys. Rev. B 33, 3952 (1986)

    Article  Google Scholar 

  27. X.T. Zhao, S. Li, R.J. Liao, J.Y. Zhang, F.P. Wang, J.Y. Li, in “Conference on Electrical Insulation and Dielectric Phenomena Annual, Report” (IEEE, 2015) p. 76

  28. H.B. Xiao, C.P. Yang, C. Huang, L.F. Xu, D.W. Shi, V.V. Marchenkov, I.V. Medvedeva, K. Bärner, J. Appl. Phys. 111, 63713 (2012)

    Article  Google Scholar 

  29. J. Li, X. Zhao, F. Gu, S. Li, Appl. Phys. Lett. 100, 202905 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Natural Science Foundation of China (No. 51177121), Foundation of National Ministry and Commission of China (No. 613262), and the Natural Science Foundation of Shaanxi Province of China (No. 2015JM5243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianying Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Huang, Y., Hou, L. et al. Effects of dc bias on dielectric relaxations in CaCu3Ti4O12 ceramics. J Mater Sci: Mater Electron 29, 4488–4494 (2018). https://doi.org/10.1007/s10854-017-8396-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8396-y

Navigation