Skip to main content
Log in

Enhanced magnetic moment and curie temperature due to co-substitution in Heusler alloys Fe2−xCoxMnSi

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetic full Heusler alloys are extremely important for spintronics because of their half-metallicity. Since they can be synthesized without any rare-earth elements, they are interesting for applications based on their magnetic behavior also. Hence solid solutions of the two Heusler alloys Fe2MnSi and Co2MnSi, Fe2−xCoxMnSi with 0 ≤ x ≤ 0.4 have been synthesized so that their magnetic moment as well as Curie temperature can be tuned. The structural characterization using a combination of X-ray diffraction and Rietveld refinement of the structure shows that all the alloys are single phase with a cubic Fm\(\overline {3}\)m structure. The lattice parameter does not change with Co-substitution in all the alloys. The magnetization studies as a function of temperature clearly shows a paramagnetic to ferromagnetic transition in all the alloys with the Curie temperature increasing from 220 K for x = 0 to ̴ 580 K for x = 0.4. It is found that the re-entrant antiferromagnetic transition observed in x = 0 alloy at 62 K can be suppressed either with a substitution of Co for Fe or by increasing the external magnetic field. The isothermal magnetization shows an extremely soft behavior with low remanence in all the alloys. The saturation magnetic moment is found to increase from 2.5 μB for x = 0 to 3.6 μB for x = 0.4 at 100 K with a simultaneous increase in the magnetocrystalline anisotropy energy density constant from 1.3 × 105 to 3.3 × 105 Jm−3. These results clearly show the capability of magnetic properties tunability of Heusler alloys with substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.H. Dederichs, I. Galanakis, P. Mavropoulos, Half-metallic alloys: electronic structure, magnetism and spin polarization. J Electron. Microsc. 54, i53–i56 (2005)

    Google Scholar 

  2. C. Palmstrøm, Epitaxial Heusler alloys: new materials for semiconductor spintronics. MRS Bull. 28, 725–728 (2003)

    Article  Google Scholar 

  3. K. Inomata, N. Ikeda, N. Tezuka, R. Goto, S. Sugimoto, M. Wojcik et al., Highly spin-polarized materials and devices for spintronics. Sci. Technol. Adv. Mater. 9, 014101 (2008)

    Article  Google Scholar 

  4. O. Pavlosiuk, D. Kaczorowski, X. Fabreges, A. Gukasov, P. Wisniewski, Antiferromagnetism and superconductivity in the half-Heusler semimetal HoPdBi. Sci. Rep. 6, 18797 (2016)

    Article  Google Scholar 

  5. A.M. Nikitin, Y. Pan, X. Mao, R. Jehee, G.K. Araizi, Y.K. Huang et al., Magnetic and superconducting phase diagram of the half-Heusler topological semimetal HoPdBi. J. Phys. Condens. Matter 27, 275701 (2015)

    Article  Google Scholar 

  6. D. Xiao, Y. Yao, W. Feng, J. Wen, W. Zhu, X.Q. Chen et al., Half-Heusler compounds as a new class of three-dimensional topological insulators. Phys. Rev. Lett. 105, 096404 (2010)

    Article  Google Scholar 

  7. S. Picozzi, A. Continenza, A.J. Freeman, Role of structural defects on the half-metallic character of Co2MnGe and Co2MnSi Heusler alloys. Phys. Rev. B 69, 944231–944237 (2004)

    Article  Google Scholar 

  8. M.P. Raphael, B. Ravel, Q. Huang, M.A. Willard, S.F. Cheng, B.N. Das et al., Presence of antisite disorder and its characterization in the predicted half-metal Co2MnSi. Phys. Rev. B 66, 1044291–1044296 (2002)

    Article  Google Scholar 

  9. H.X. Liu, T. Kawami, K. Moges, T. Uemura, M. Yamamoto, F. Shi et al., Influence of film composition in quaternary Heusler alloy Co2(Mn,Fe)Si thin films on tunnelling magnetoresistance of Co2(Mn,Fe)Si/MgO-based magnetic tunnel junctions. J. Phys D 48, 164001 (2015)

    Article  Google Scholar 

  10. N.V. Dai, M.S. Seo, T.W. Eom, Y.P. Lee, S.J. Lee, M. Jang, Magnetoresistive properties of Co2MnSi heusler alloy films. J. Korean Phys. Soc. 55, 1255–1258 (2009)

    Article  Google Scholar 

  11. K. Moges, Y. Honda, H.X. Liu, T. Uemura, M. Yamamoto, Y. Miura et al., Enhanced half-metallicity of off-stoichiometric quaternary Heusler alloy Co2(Mn,Fe)Si investigated through saturation magnetization and tunneling magnetoresistance. Phys. Rev. B 93, 134403 (2016)

    Article  Google Scholar 

  12. K.A.R. Ziebeck, P.J. Webster, The antiferromagnetic and ferromagnetic properties of Fe2MnSi. Philos. Mag. 34, 973–982 (1976)

    Article  Google Scholar 

  13. Z. Nourbakhsh, The electronic and magnetic properties of half-metal type MnFexCo2–xSi (with x = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2) alloys. J. Supercond. Nov. Magn. 24, 887–893 (2011)

    Article  Google Scholar 

  14. M. Ležaić, P. Mavropoulos, S. Blügel, H. Ebert, Complex magnetic behavior and high spin polarization in Fe3–xMnxSi alloys. Phys. Rev. B 83, 094434 (2011)

    Article  Google Scholar 

  15. M. Belkhouane, S. Amari, A. Yakoubi, A. Tadjer, S. Méçabih, G. Murtaza et al., First-principles study of the electronic and magnetic properties of Fe2MnAl, Fe2MnSi and Fe2MnSi0.5Al0.5. J. Magn. Magn. Mater. 377, 211–214 (2015)

    Article  Google Scholar 

  16. B. Hamad, Q.-M. Hu, The effect of defects on the electronic and magnetic properties of Fe2MnSi Heusler alloy. Phys. Status Solidi (b), 248, 2893–2898 (2011)

    Article  Google Scholar 

  17. Y. Kondo et al., Magnetic properties of the Heusler alloys Fe2−xCoxMnSi. J. Phys. 150, 042099 (2009)

    Google Scholar 

  18. L. Bainsla et al., Investigation of the quaternary Fe2 – x Cox MnSi (0 ≤ x ≤ 0.6) alloys by structural, magnetic, resistivity and spinpolarization measurements. J. Phys. D 48, 125002 (2015)

    Article  Google Scholar 

  19. P. Mohn, E. Supanetz, Spin ordering in Fe3−x Mn x Si Heusler alloys. Philos. Mag. Part B 78, 629–636 (1998)

    Article  Google Scholar 

  20. S. Ishida et al., Theoretical search of spintronic material in Fe2(Cr1−xMnx)Si and (Fe1−xCox)2MnSi. Mater. Trans. 49, 114–119 (2008)

    Article  Google Scholar 

  21. Y. Melikhov, J. Snyder et. al., The effect of Cr-substitution on the magnetic anisotropy and its temperature dependence in Cr-substituted cobalt ferrite. IEEE Trans. Magn. 42, 2861–2863 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Nanomission, Department of Science and Technology, Govt. of India for financial support and IIT Bombay-Central facilities for magnetic characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Mofasser Mallick or Satish Vitta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallick, M.M., Vitta, S. Enhanced magnetic moment and curie temperature due to co-substitution in Heusler alloys Fe2−xCoxMnSi. J Mater Sci: Mater Electron 29, 1420–1425 (2018). https://doi.org/10.1007/s10854-017-8049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8049-1

Navigation