Skip to main content
Log in

La2O2CN2:Yb3+/Tm3+ nanofibers and nanobelts: novel fabrication technique, structure and upconversion luminescence

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

For the first time, La2O2CN2:Yb3+/Tm3+ upconversion luminescence nanofibers and nanobelts were successfully fabricated via cyanamidation of the respective relevant La2O3:Yb3+/Tm3+ nanofibers and nanobelts which were obtained by calcining the electrospinning made PVP/[La(NO3)3+Yb(NO3)3+Tm(NO3)3] composite nanofibers and nanobelts. The morphologies, structures, and properties of the nanofibers and nanobelts are investigated. The diameters of La2O2CN2:Yb3+/Tm3+ nanofibers and width of La2O2CN2:Yb3+/Tm3+ nanobelts with the thickness of 112 nm are 109 ± 4.3 nm and 1.8 ± 0.2 μm at 95% confidence level, respectively. Upconversion luminescent analysis manifests that La2O2CN2:Yb3+/Tm3+ nanofibers and nanobelts emit intense blue emissions around 476 nm corresponding to 1G43H6 energy level transitions of Tm3+ ions under the excitation of a 980-nm diode laser. For the La2O2CN2:30%Yb3+/x%Tm3+ nanofibers, the blue emission intensity increases when the Tm3+ concentration is increased from 0.1 to 0.5% and then decreases as the Tm3+ concentration is further increased from 0.5 to 1.0%, so the Tm3+ optimum concentration is 0.5%. For the La2O2CN2:y%Yb3+/0.5%Tm3+ nanofibers, when the concentration of Tm3+ is fixed at 0.5%, the blue emission intensity increases when the Yb3+ concentration is increased from 5 to 30% and then decreases as the Yb3+ concentration is further increased from 30 to 40%. Therefore, the optimum concentration of Yb3+ is 30%. Thus, the optimum molar concentration ratio of Yb3+ to Tm3+ ions is 60:1 in the as-prepared La2O2CN2:Yb3+/Tm3+ nanofibers. The formation mechanisms of the La2O2CN2:Yb3+/Tm3+ nanostructures are also proposed. The novel technique can be applied to prepare other rare earth oxycyanamide nanostructures of various morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Scheps, Prog. Quant. Electron 20, 271–358 (1996)

    Article  Google Scholar 

  2. S.F. Lim, R. Riehn, W. S. Ryu, N. Khanarian, C.-K. Tung, D. Tank, R.H. Austin, Nano Lett. 6, 169–174 (2006)

    Article  Google Scholar 

  3. X.P. Qin, G.H. Zhou, H. Yang, Y. Yang, J. Zhang, S.W. Wang, J. Alloys. Compd. 493, 672–677 (2010)

    Article  Google Scholar 

  4. R. Kapoor, C.S. Friend, A. Biswas, P.N. Prasad, Opt. Lett. 25, 338–340 (2000)

    Article  Google Scholar 

  5. E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, Science 273, 1185–1189 (1996)

    Article  Google Scholar 

  6. G.A. Kumar, C.W. Chen, R.E. Riman, Appl. Phys. Lett. 90, 093123 (2007)

    Article  Google Scholar 

  7. M. Wang, C.C. Mi, Y.X. Zhang, J.L. Liu, F. Li, C.B. Mao, S.K. Xu, J. Phys. Chem. C 113, 19021–19027 (2009)

    Article  Google Scholar 

  8. J.Y. Sun, J.B. Xian, H.Y. Du, J. Phys. Chem. Solids 72, 207–213 (2011)

    Article  Google Scholar 

  9. K. Omri, J. El Ghoul, A. Alyamani, C. Barthou, L. El Mir, Phys. E 53, 48–54 (2013)

    Article  Google Scholar 

  10. K. Omri, L. El Mir, Superlatt. Microstruct. 70, 24–32 (2014)

    Article  Google Scholar 

  11. K. Omril, L. El Mir, J. Mater. Sci. 27, 9476–9482 (2016)

    Google Scholar 

  12. D. Li, Q.L. Ma, X. Xi, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, Chem. Eng. J. 309, 230–239 (2017)

    Article  Google Scholar 

  13. Y. Hashimoto, M. Takahashi, S. Kikkawa, F. Kanamaru, J. Solid State Chem. 114, 592–594 (1995)

    Article  Google Scholar 

  14. J. Sindlinger, J. Glaser, H. Bettentrup, T. Justel, Z. H.-J. Meyer, Anorg. Allg. Chem. 633, 1686–1690 (2007)

    Article  Google Scholar 

  15. Y. Hashimoto, M. Takahashi, S. Kikkawa, F. Kanamaru, J. Solid State Chem. 125, 37–42 (1996)

    Article  Google Scholar 

  16. E. Säilynoja, M. Lastusaari, J. Hölsä, P. Porcher, J. Lumin. 72–74, 201–203 (1997)

    Article  Google Scholar 

  17. J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, E. Säilynoja, P. Porcher, P. Dereń, W. Strek, Spectrochim. Acta. Part A 54, 2065–2069 (1998)

    Article  Google Scholar 

  18. X.M. Guo, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Chem. Eng. J. 250, 148–156 (2014)

    Article  Google Scholar 

  19. X.M. Guo, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, CrystEngComm 16, 5409–5417 (2014)

    Article  Google Scholar 

  20. X.M. Guo, W.S. Yu, X.T. Dong, J.X. Wang, Q.L. Ma, G.X. Liu, M. Yang, J. Am. Ceram. Soc. 98, 1215–1222 (2015)

    Article  Google Scholar 

  21. X.M. Guo, W.S. Yu, X.T. Dong, J.X. Wang, Q.L. Ma, G.X. Liu, M. Yang, Eur. J. Inorg. Chem. 2015, 389–396 (2015)

    Article  Google Scholar 

  22. Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, J. Xu, Opt. Mater. 35, 526–530 (2013)

    Article  Google Scholar 

  23. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Chem. Eng. J. 222, 16–22 (2013)

    Article  Google Scholar 

  24. Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, Nanoscale 6, 2945–2952 (2014)

    Article  Google Scholar 

  25. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, ChemPlusChem 79, 690–697 (2014)

    Article  Google Scholar 

  26. D. Li, Q.L. Ma, Y. Song, X. Xi, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, J. Am. Ceram. Soc. 100, 2034–2044 (2017)

    Article  Google Scholar 

  27. Q.L. Kong, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Mater. Sci. 24, 4745–4756 (2013)

    Google Scholar 

  28. L.Y. Yang, J.X. Wang, X.T. Dong, G.X. Liu, W.S. Yu, J. Mater. Sci. 48, 644–650 (2013)

    Article  Google Scholar 

  29. A. Greiner, J.H. Wendorff, Angew. Chem. Int. Ed. 46, 5670–5703 (2007)

    Article  Google Scholar 

  30. C. Burger, B.S. Hsiao, B. Chu, Annu. Rev. Mater. Sci. 36, 333–368 (2006)

    Article  Google Scholar 

  31. Q.P. Pham, U. Sharma, A.G. Mikos, Tissue Eng. 12, 1197–1211 (2006)

    Article  Google Scholar 

  32. F.S. Kim, G.Q. Ren, S.A. Jenekhe, Chem. Mater. 23, 682–732 (2011)

    Article  Google Scholar 

  33. N. Bhardwaj, S.C. Kundu, Biotechnol. Adv. 28, 325–347 (2010)

    Article  Google Scholar 

  34. S.L. Chen, H.Q. Hou, F. Harnisch, S.A. Patil, A.A. Carmona-Martinez, S. Agarwal, Y.Y. Zhang, S. Sinha-Ray, A.L. Yarin, A. Greiner, U. Schröder, Energy Environ. Sci. 4, 1417–1421 (2011)

    Article  Google Scholar 

  35. C.J. Luo, S.D. Stoyanov, E. Stride, E. Pelan, M. Edirisinghe, Chem. Soc. Rev. 41, 4708–4735 (2012)

    Article  Google Scholar 

  36. K. Garg, G.L. Bowlin, Biomicrofluidics 5, 13403 (2011)

    Article  Google Scholar 

  37. J.P. Chen, Y.S. Chang, Colloids Surf. B 86, 169–175 (2011)

    Article  Google Scholar 

  38. S. Ramakrishna, K. Fujihara, W.-E. Teo, T. Yong, Z.W. Ma, R. Ramaseshan, Mater. Today 9, 40–50 (2006)

    Article  Google Scholar 

  39. Y.C. Chou, C.L. Shao, X.H. Li, C.Y. Su, H.C. Xu, M.Y. Zhang, P. Zhang, X. Zhang, Y.C. Liu, Appl. Surf. Sci. 285, B509–B516 (2013)

    Article  Google Scholar 

  40. M. Zhang, C. Shao, P. Zhang, C. Su, X. Zhang, P. Liang, Y. Sun, Y. Liu, J. Hazard. Mater. 225–226, 155–163 (2012)

    Article  Google Scholar 

  41. Y. Yang, C.C. Zhang, Y. Xu, H.Y. Wang, X. Li, C. Wang, Mater. Lett. 64, 147–150 (2010)

    Article  Google Scholar 

  42. B. Dong, Z.C. Li, Z.Y. Li, X.R. Xu, M.X. Song, W. Zheng, C. Wang, S.S. Al-Deyab, M. El-Newehy, J. Am. Ceram. Soc. 93, 3587–3590 (2010)

    Article  Google Scholar 

  43. L. Han, Y.H. Hu, M.M. Pan, Y.F. Xie, Y.Y. Liu, D. Li, X.T. Dong, CrystEngComm 17, 2529–2535 (2015)

    Article  Google Scholar 

  44. F. Bi, X.T. Dong, J.X. Wang, G.X. Liu, New J. Chem. 39, 3444–3451 (2015)

    Article  Google Scholar 

  45. Y. Wei, F.Q. Lu, X.R. Zhang, D.P. Chen, J. Alloys. Compd. 42, 333–340 (2007)

    Article  Google Scholar 

  46. G.F. Wang, W.P. Qin, L.L. Wang, G.D. Wei, P.F. Zhu, R. Kim, Opt. Exp. 16, 11907–11914 (2008)

    Article  Google Scholar 

  47. H.L. Qiu, C.H. Yang, W. Shao, J. Damasco, X.L. Wang, H. Agren, P.N. Prasad G.Y. Chen, Nanomaterials 4, 55–68 (2014).

    Article  Google Scholar 

  48. Y.H. Song, Y.J. Huang, L.H. Zhang, Y.H. Zheng, N. Guo, H.P. You, RSC Adv. 2, 4777–4781 (2012)

    Article  Google Scholar 

  49. C.Y. Cao, W.P. Qin, J.S. Zhang, Y. Wang, P.F. Zhu, G.F. Wang, G.D. Wei, L.L. Wang, L.Z. Jin, J. Fluorine Chem. 129, 204–209 (2008)

    Article  Google Scholar 

  50. Q. Liu, X.H. Yan, Y. Chen, X.F. Wang, J. Rare Earths 31, 1053–1058 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51573023, 50972020), Natural Science Foundation of Jilin Province (20170101101JC), Science and Technology Research Planning Project of the Education Department of Jilin Province during the 13th five-year plan period (JJKH20170608KJ), and Youth Foundation of Changchun University of Science and Technology (No. XQNJJ-2016-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangting Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Li, D., Dong, X. et al. La2O2CN2:Yb3+/Tm3+ nanofibers and nanobelts: novel fabrication technique, structure and upconversion luminescence. J Mater Sci: Mater Electron 28, 16282–16291 (2017). https://doi.org/10.1007/s10854-017-7534-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7534-x

Navigation