Skip to main content
Log in

Phase, microstructure and magnetic evaluation in yttrium iron garnet (YIG) synthesized via mechanical alloying

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The high electrical resistivity and excellent magnetic properties make ferrites a preferred choice in electronics and telecommunications in higher frequency region (upper MHz and GHz). We chose to investigate experimentally the effect of temperature on a sample’s properties which are important to microwave scientists and engineers, after undergoing heat treatments. In this study, yttrium iron garnet (YIG) was prepared via mechanical alloying involving a 24 h milling time of a mixture of yttrium oxide (Y2O3) and iron oxide (Fe2O3). The samples were then sintered at different temperatures at 900, 1100, 1200 and 1350 °C with 10 h holding time and optimized for microstructure. The microstructure, magnetic and physical properties were studied in order to understand the resulting materials. Starting powders were successfully prepared using high energy ball milling technique for 24 h. The XRD patterns confirmed the formation of the single-phase cubic garnet structure with no extra lines corresponding to any other crystallographic phase or unreacted ingredient. A complete phase of YIG was observed to form at 900 °C sintering temperature due to the high reactivity of the nanosized starting powder. SEM micrographs showed larger grain size as the sintering temperature increased, consequently increasing the number of multi-domain grains. The permeability values were influenced by several factors which are degree of crystallinity, dominant magnetization process (ease of domain walls movement in multi-domain grains or spin rotation in single-domain grains) and large enough grain size which exceed the critical grain size for transition from single-domain to multi-domain grains. As for magnetic properties, the Hc values were found to increase as the sintering temperature increased from 900 to 1200 °C and subsequently reduced at 1350 °C sintering temperature. The increased value of coercivity for lower sintering was due to shape and magnetocrystalline anisotropy for small enough grains. An integrated analysis of phase, microstructural and hysteresis data pointed to existence of three distinct shape-differentiated groups of B–H hysteresis loops which belong to samples with moderate and strong magnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Garskaite, K. Gibson, A. Leleckaite, J. Glaser, D. Niznansky, A. Kareiva, H.J. Mayer, On the synthesis and characterizations of iron-containing garnets (Y3Fe5O12, YIG, and Fe3Al5O12, IAG). Chem. Phys. 323, 204–210 (2006)

    Article  Google Scholar 

  2. R.J. Joseyphus, A. Narayanasamy, A.K. Nigam, R. Krishnan, Effect of mechanical milling on the magnetic properties of garnets. J. Magn. Magn. Mater. 296, 57–64 (2006)

    Article  Google Scholar 

  3. M.B. Park, N.H. Cho, Structural and magnetic characteristics of yttrium iron garnet (YIG, Ce:YIG) films prepared by RF magnetron sputter techniques. J. Magn. Magn. Mater. 231, 253–264 (2001)

    Article  Google Scholar 

  4. H. Xu, H. Yang, W. Xu, S. Feng, Magnetic properties of Ce, Gd-substituted yttrium iron garnet ferrite powders fabricated using a sol–gel method. J. Mater. Process. Technol. 197, 296–300 (2008)

    Article  Google Scholar 

  5. T. Sekijima, H. Itoh, T. Fujii, K. Wakino, M. Okada, J. Cryst. Growth 229, 409–414 (2011)

    Article  Google Scholar 

  6. A.C. Rastogi, V.N. Moorthy, Mater. Sci. Eng. B 95, 131–136 (2002)

    Article  Google Scholar 

  7. H. Yu, L. Zeng, C. Lu, W. Zhang, G. Xu, Mater. Charact. 62, 378–381 (2011)

    Article  Google Scholar 

  8. M. Ristic, I. Nowik, S. Popovic, I. Felner, S. Music, Mater. Lett. 57, 2584–2590 (2003)

    Article  Google Scholar 

  9. M. Pal, D. Chakravorty, Phys. E 5, 200–203 (2000)

    Article  Google Scholar 

  10. P. Vaqueiro, M.P.C. Lopez, M.A.L. Quintela, J. Solid State Chem. 126, 161–168 (1996)

    Article  Google Scholar 

  11. M.N. Akhtar, M.U. Islam, S.B. Niazi, M.U. Rana, Int. J. Mod. Phys. B 25, 1149–1160 (2011)

    Article  Google Scholar 

  12. A. Dias, R.L. Moreira, N.D.S. Mohallem, J. Phys. Chem. Solids 58, 543–547 (1997)

    Article  Google Scholar 

  13. S. Deka, P.A. Joy, Mater. Chem. Phys. 100, 98–101 (2006)

    Article  Google Scholar 

  14. S. Woltz, R. Hiergeist, P. Gornert, C. Russel, J. Magn. Magn. Mater. 298, 7–13 (2006)

    Article  Google Scholar 

  15. J. Ding, H. Yang, W.F. Miao, P.G. Mccormick, R. Street, J. Alloys Compd. 221, 70–73 (1995)

    Article  Google Scholar 

  16. N. Yahya, M.N. Akhtar, A.F. Masuri, M. Kashif, J. Appl. Sci. 11, 1303–1308 (2011)

    Article  Google Scholar 

  17. M.N. Akhtar, N. Yahya, K. Koziol, N. Nasir, Ceram. Int. 37, 3237–3245 (2011)

    Article  Google Scholar 

  18. P. Concalves, F.M. Figueiredo, Mechanosynthesis of La1–xSrxGa1–yMgyO3–δ materials. Solid State Ionics 179, 991–994 (2008)

    Article  Google Scholar 

  19. B.G. Ravi, X.Z. Guo, Q.Y. Yan, R.J. Gambino, S. Sampath, J.B. Parise, Surf. Coat. Technol. 201, 7597–7605 (2007)

    Article  Google Scholar 

  20. T. Kimura, H. Takizawa, K. Uheda, T. Endo, M. Shimada, J. Am. Ceram. Soc. 81, 2961–2964 (1998)

    Article  Google Scholar 

  21. R. Nazlan, M. Hashim, I.R. Ibrahim, I. Ismail, Dependence of magnetic hysteresis on evolving single-sample sintering in fine-grained yttrium iron garnet. J. Supercond. Nov. Magn. doi:10.1007/s10948-013-2328-8

  22. N. Rodziah et al., Dependence of developing magnetic hysteresis characteristics on stages of evolving microstructure in polycrystalline yttrium iron garnet. Appl. Surf. Sci. 258, 2679–2685 (2012)

    Article  Google Scholar 

  23. R. Nazlan, I. Ismail, M. Hashim, K. Samikannu, N. MohdSaidin, Complex permeability, Curie temperature and activation energy as a function of microstructure evolution in a mechanically alloyed Y3Fe5O12 single-sample. Aust. J. Basic Appl. Sci. 8(3), 474–482 (2014)

    Google Scholar 

  24. R.L. Coble, Sintering crystalline solids. I. intermediate and final state diffusion models. J. Appl. Phys. 32, 787–792 (1961)

    Article  Google Scholar 

  25. T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, DC resistivity of Ni-Zn ferrites prepared by oxalate precipitation method. Mater. Chem. Phys 111, 87–91 (2008)

    Article  Google Scholar 

  26. M. Jarcho, C.H. Bolen, M.B. Thomas, J. Bobick, J.K. Kay, R.H. Doremus, Hydroxylapatite synthesis and characterization in dense polycrystalline form. J. Mater. Sci. 11, 2027–2035 (1976)

    Article  Google Scholar 

  27. M. Syazwan Mustaffa, M. Hashim, R.S. Azis, I. Ismail, S. Kanagesan, M. Misbah Zulkimi, Magnetic phase-transition dependence on nano-to-micron grain-size microstructural changes of mechanically alloyed and sintered Ni0.6Zn0.4Fe2O4. J. Supercond. Nov. Magn. 27, 1451–1462 (2014)

    Article  Google Scholar 

  28. R.S. Tebble, D.J. Craik, in Magnetic Materials (Wiley, London, 1969)

    Google Scholar 

  29. I. Ismail, M. Hashim, Sintering temperature dependence of evolving morphologies and magnetic properties of Ni0.5Zn0.5Fe2O4 synthesized via mechanical alloying. J. Supercond. Nov. Magn. 25, 1551–1561 (2012)

    Article  Google Scholar 

  30. I.R. Idza et al., Influence of evolving microstructure on magnetic hysteresis characteristics in polycrystalline nickel–zinc ferrite, Ni0.3Zn0.7Fe2O4. Mater. Res. Bull. 47, 1345–1352 (2012)

    Article  Google Scholar 

  31. S.B. Waje, M. Hashim, W.D. WanYusoff, Z. Abbas, Sintering temperature dependence of room temperature magnetic and dielectric properties of Co0.5Zn0.5Fe2O4 prepared using mechanically alloyed nanoparticles. J. Magn. Magn. Mater 322, 686–691 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Universiti Putra Malaysia (UPM) for providing Research University Grant Scheme (RUGS) with the vot number 91553 and also to Ministry of Higher Education (MOHE) for providing the Fundamental Research Grant Scheme (FRGS) with the vot number 5523649.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Hapishah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hapishah, A.N., Hashim, M., Syazwan, M.M. et al. Phase, microstructure and magnetic evaluation in yttrium iron garnet (YIG) synthesized via mechanical alloying. J Mater Sci: Mater Electron 28, 15270–15278 (2017). https://doi.org/10.1007/s10854-017-7407-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7407-3

Navigation