Skip to main content
Log in

Structural, bandgap tuning and electrical properties of Cu doped ZnO nanoparticles synthesized by mechanical alloying

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu doped ZnO nanoparticles abbreviated as Zn1−xCuxO (x = 0, 0.01 and 0.03) were synthesized by mechanical alloying. The change in structure, morphology, band gap and dielectric properties of the synthesized nanoparticles were investigated by XRD, FE-SEM, FTIR, UV–Vis and impedance analyzer respectively. The incorporation of the dopant Cu into ZnO hexagonal wurtzite structure has been verified by X-ray diffraction (XRD) and the Cu doping on the structural bonding of ZnO has been verified by fourier transformation infrared spectra (FTIR).The XRD spectra shows that all the synthesized nanoparticles are single phase, hexagonal wurtzite structure and belong to the space group of P63mc.Crystallite size of Cu doped ZnO (15 nm) nanoparticles is smaller than pure ZnO (18 nm) and peak broadening exists in the system. FE-SEM analysis indicates that Cu doping affects the surface morphology of ZnO. The band gap (Eg) of ZnO decreases with Cu doping which can be attributed to sp-d exchange interaction between the ZnO band electrons and localized d electrons of Cu2+ ions. The dielectric constant of ZnO decreases with Cu doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Das, B.K. Das, K. Parashar, S.K.S. Parashar, Bull. Mater. Sci. 40, 247–251 (2017)

    Article  Google Scholar 

  2. J. Wang, J.M. Xue, D.M. Wan, B.K. Gan, J. Solid State Chem. 154, 321–328 (2000)

    Article  Google Scholar 

  3. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2011)

    Article  Google Scholar 

  4. A. Mhamdi, R. Mimouni, A. Amlouk, M. Amlouk, S. Belgacem, J. Alloys Compd. 610, 250–257 (2014)

    Article  Google Scholar 

  5. N.R. Yogamalar, A.C. Bose, Prog. Nanotechnol. Nanomater. 2, 1–20 (2013)

    Google Scholar 

  6. C. Xia, F. Wang, C. Hu, J. Alloys Compd. 589, 604–608 (2014)

    Article  Google Scholar 

  7. N. Kamarulzaman, M.F. Kasim, R.R. Kamarulzaman et al., Nanoscale Res. Lett. 10, 346 (2015)

    Article  Google Scholar 

  8. J.A. Sans, J.F. Sánchez-Royo, A. Segura, Superlattices Microstruct. 43 362–367 (2008)

    Article  Google Scholar 

  9. P.K. Labhane, V.R. Huse, L.B. Patle, A.L. Chaudhari, G.H. Sonawane, J. Mater. Sci. Chem. Eng. 3, 39–51 (2015)

    Google Scholar 

  10. T. Larbi, B. Ouni, A. Boukachem, K. Boubaker, M. Amlouk, Mater. Sci. Semicond. Process. 22, 50–58 (2014)

    Article  Google Scholar 

  11. G. Srinet, R. Kumar, V. Sajal, Ceram. Int. 39, 7557–7561(2013)

    Article  Google Scholar 

  12. A. Franco Jrn, H.V. Pessoni, Mater. Lett. 180, 305–308 (2016)

    Article  Google Scholar 

  13. M.L. Dinesha, G.D. Prasanna, C.S. Naveen, H.S. Jayanna, Indian J. Phys. 87, 147–153 (2013)

    Article  Google Scholar 

  14. T. Das, B.K. Das, K. Parashar, S.K.S. Parashar, Acta Phys. Pol. A 130, 1358–1362 (2016)

    Article  Google Scholar 

  15. T. Das, B.K. Das, K. Parashar, S.K.S. Parashar,  N.rao A, Adv. Mater. Res. 938, 63–70 (2014)

    Article  Google Scholar 

  16. S. Muthukumaran, R. Gopalkrishnan, Opt. Mater. 34, 1946–1953 (2012)

    Article  Google Scholar 

  17. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan. J. Appl. Phys. 98, 1–103 (2005)

    Article  Google Scholar 

  18. N.-E. Sung, S.-W. Kang, H.-J. Shin, H.-K. Lee, I.-J. Lee, Thin Solid Films 547, 285–288 (2013)

    Article  Google Scholar 

  19. P.K. Sharma, R.K. Dutta, A.C. Pandey, J. Magn. Magn. Mater. 321,4001–4005 (2009)

    Article  Google Scholar 

  20. J.-Y. Park, Y.-J. Lee, K.-W. Jun, J.-O. Baeg, D.J. Yim, J. Ind. Eng. Chem. 12, 882 (2006)

    Google Scholar 

  21. A. Sahai, N. Goswami, Phys. E 58,130–137 (2014)

    Article  Google Scholar 

  22. H.H. AbuulrahmanSyedahamed, C. Kartikeyan, V. Senthil, S. Kumarsan, G. Ravi, J. Mater. Chem. B 43, 5950 (2013)

    Google Scholar 

  23. P. Kumar, Y. Kumar, H.K. Malik, S. Annapoorni, S. Gautam, K.H. Chae, K. Asokan, Appl. Phys. A 14, 453–457 (2013)

    Google Scholar 

  24. Y.P. Venkata Subbaiah, P. Prathap, K.T. Ramakrishna Reddy, Appl. Surf. Sci. 253, 2409 (2006)

    Article  Google Scholar 

  25. R. John, R. Rajakumari, Nano Micro Lett. 4, 65–72 (2012)

    Article  Google Scholar 

  26. Z.R. Khan, M.S. Khan, M. Zulfequar, M.S. Khan, Mater. Sci. Appl. 2, 340–345 (2011).

    Google Scholar 

  27. J. Singh, M.S.L. Hudson, S.K. Pandey, R.S. Tiwari, O.N. Srivastava, Int. J. Hydrog. Energy 37, 3748–3754 (2012)

    Article  Google Scholar 

  28. K.G. Saw, N.M. Aznan, F.K. Yam, S.S. Ng, S.Y. Pung, PLoS ONE 10, 0141180 (2015)

    Google Scholar 

  29. M. Willander, O. Nur, Q.X. Zhao, L.L. Yang, M. Lorenz, B.Q. Cao, J.Z. Perez, C. Czekalla, G. Zimmermann et al., Nanotechnology 20, 332001 (2009)

    Article  Google Scholar 

  30. X. Linhua, S. Xiao, C. Zhang, G. Zheng, J. Su, Z.L. Wang, J. Mater. Chem. Phys. 148, 720–726 (2014)

    Article  Google Scholar 

  31. C. Jayachandraiah, G. Krishnainah, Adv. Mater. Lett. 6, 743–748 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. S. Parashar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B.K., Das, T., Parashar, K. et al. Structural, bandgap tuning and electrical properties of Cu doped ZnO nanoparticles synthesized by mechanical alloying. J Mater Sci: Mater Electron 28, 15127–15134 (2017). https://doi.org/10.1007/s10854-017-7388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7388-2

Navigation