Skip to main content
Log in

Improving the performance of organic light-emitting devices by incorporating non-doped TCNQ as electron buffer layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The performance of organic light-emitting devices (OLEDs) is improved by inserting non-doped tetracyanoquinodimethane (TCNQ) electron buffer layer (EBL) between 4,7-diphnenyl-1,10-phe-nanthroline (Bphen) electron transport layer (ETL) and LiF/Al cathode. By optimizing the thickness of TCNQ layer, we find that the device with 6 nm TCNQ buffer layer can achieve the best performance. The maximum luminance, current efficiency, power efficiency and half-lifetime of the optimal device are increased by 27.32, 51.70, 127.55, and 73.89%, respectively, compared with those of the control device without TCNQ buffer layer. This improvement can be attributed to that the insertion of non-doped TCNQ buffer layer which is a simple approach can enhance the electron injection and operational stability of the devices. Moreover, we have carried out the tests of the atomic force microscope (AFM), scanning electron microscopy (SEM) and Kelvin probe to explore the effect of insering TCNQ. These tests results further verify that TCNQ layer not only smooth the surface of the films but also improve the electron injection and transport characteristics. As a result, the performances of the OLEDs can be effectively improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51(12), 913–915 (1987)

    Article  Google Scholar 

  2. N. Thejokalyani, S.J. Dhoble, Renew. Sust. Energ. Rev 32(5), 448–467 (2014)

    Article  Google Scholar 

  3. A.D. Almeida, B. Santos, B. Paolo, M. Quicheron, Renew. Sust. Energ. Rev 34(34), 30–48 (2014)

    Article  Google Scholar 

  4. T. Higuchi, H. Nakanotani, C. Adachi, Adv. Mater. 27(12), 2019–2023 (2015)

    Article  Google Scholar 

  5. H. Moval, Optik 126(24), 5237–5240 (2015)

    Article  Google Scholar 

  6. D.S.M. Lian, K. Xie, Q.S.M. Yong, J. Soc. Inf. Display. 19(6),453–461 (2011)

    Article  Google Scholar 

  7. C.N. Li, B.W. Xiao, S.Y. Liu, Chin. Phys. Lett. 18(1), 120–122 (2001)

    Article  Google Scholar 

  8. Y. Zhang, J. Lee, S.R. Forrest, Nat. Commun. 5(5), 5008–5008 (2014)

    Article  Google Scholar 

  9. T. Mori, T. Mitsuoka, M. Ishii, H. Fujikawa, Y. Taga, Appl. Phys. Lett. 80(21), 3895–3897 (2002)

    Article  Google Scholar 

  10. L.B. Schein, P.J. Nigrey, Phys. Rev. B 18(6), 2929–2930 (1978)

    Article  Google Scholar 

  11. A.R. Brown, D.W.D. Leeuw, E.J. Lous, E.E. Havinga, Synthetic Met. 66(3), 257–261 (1994)

    Article  Google Scholar 

  12. R. Grover, R. Srivastava, M.N. Kamalasanan, D.S. Mehta, Org. Electron. 13(12), 3074–3078 (2012)

    Article  Google Scholar 

  13. D.W. Chou, K.L. Chen, C.J. Huang, Y.J. Tsao, W.R. Chen, T.H. Meen, Thin Solid Films 536(5), 235–239 (2013)

    Article  Google Scholar 

  14. Y. Jiang, H. Liu, X. Gong, C. Li, R. Qin, H. Ma, J. Power Sources 331, 240–246 (2016)

    Article  Google Scholar 

  15. T. Xiao, F. Fungura, M. Cai, J.W. Anderegg, J. Shinar, R. Shinar, Org. Electron. 14(10), 2555–2563 (2013)

    Article  Google Scholar 

  16. I. Naik, R. Bhajantri, Mater. Today. 3(10), 3608–3613 (2016)

    Article  Google Scholar 

  17. R. Grover, R. Srivastava, M.N. Kamalasanan, D.S. Mehta, J. Lumin. 146(1), 53–56 (2014)

    Article  Google Scholar 

  18. Z.Y. Lü, Z. Lü, J. Xiao, Vacuum 128, 240–243 (2016)

    Article  Google Scholar 

  19. K.S. Lee, D.H. Kim, D.U. Lee, T.W. Kim, Thin Solid Films 521(3), 193–196 (2012)

    Article  Google Scholar 

  20. S. Naka, H. Okada, H. Onnagawa, T. Tsutsui, Appl. Phys. Lett. 76(2), 197–199 (2000)

    Article  Google Scholar 

  21. C. Wäckerlin, C. Iacovita, D. Chylarecka, P. Fesser, T.A. Jung, N. Ballav, Chem. Commun. 47(32), 9146–9148 (2011)

    Article  Google Scholar 

  22. K. Naito, A. Miura, J. Phys. Chem. 97(23), 6240–6248 (1993)

    Article  Google Scholar 

  23. B.W. Dandrade, S.R. Forrest, A.B. Chwang, Appl. Phys. Lett. 83(19), 3858–3860 (2003)

    Article  Google Scholar 

  24. N. Juhari, W.H.A. Majid, A.I. Zainol, Proc. Eng. 53(9), 354–361 (2013)

    Article  Google Scholar 

  25. M. Zubair, M. Mustafa, A. Ali, Y.H. Doh, K.H. Choi, J. Mater. Sci. Mater. Electron. 26(5), 3344–3351 (2015)

    Article  Google Scholar 

  26. S.J. Hwang, M.C. Tseng, K.C. Hwang, H.H. Yu, J. Disp. Technol. 3(3), 253–258 (2007)

    Article  Google Scholar 

  27. C. Ganzorig, K.J. Kwak, K. Yagi, M. Fujihira, Appl. Phys. Lett. 79(2), 272–274 (2001)

    Article  Google Scholar 

  28. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Science 258(5087), 1474–1476 (1992)

    Article  Google Scholar 

  29. H.S. Kang, K.N. Park, Y.R. Cho, D.W. Park, Y. Choe, J. Ind. Eng. Chem. 15(5), 752–757 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The Project was supported by the National Natural Science Foundation of China (Grant No. 60906022), the Natural Science Foundation of Tianjin, China (Grant No. 10JCYBJC01100), the Scientific Developing Foundation of Tianjin Education Commission, China (Grant No. 2011ZD02), the Key Science and Technology Support Program of Tianjin, China (Grant No. 14ZCZDGX00006), and the National High Technology Research and Development Program of China (Grant No. 2013AA014201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Wu or Shougen Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xin, L., Gao, J. et al. Improving the performance of organic light-emitting devices by incorporating non-doped TCNQ as electron buffer layer. J Mater Sci: Mater Electron 28, 12761–12767 (2017). https://doi.org/10.1007/s10854-017-7103-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7103-3

Keywords

Navigation