Skip to main content
Log in

Fabrication of Ce2S3/MoS2 composites via recrystallization-sulfurization method and their improved electrochemical performance for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple and novel method based on recrystallization-sulfurization method has been developed to fabricate Ce2S3/MoS2 composite and their structure, morphology and electrochemical performance is researched systematically. The Ce2S3/MoS2 composite exhibit enhanced electrochemical performance compared with Ce2S3 and MoS2. Among them, Ce2S3/MoS2 composite has an initial reversible discharge capacity of 187.5 mAh g−1, coulombic efficiency of 78.6% and a reversible capacity as high as 636.5 mAh g−1, coulombic efficiency of 99.7% after 500 cycles at a current density of 100 mA g−1 and the highest discharge capacity of 97.3 mAh g−1 at a high current density of 1000 mA g−1, showing the best reversible capacity and cycling performance. The results show that the compositing between MoS2 and Ce2S3 can maintain the stability of the structure during the charge/discharge process and existence of Ce2S3 can enhance the electrical conductivity of Ce2S3/MoS2 composite and further improves the reversible capacities, cycling performance and rate performance of Ce2S3/MoS2 composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Vu, Y. Qian, A. Stein, Porous electrode materials for lithium-ion batteries-how to prepare them and what makes them special. Adv. Energy Mater. 9, 1056–1085 (2012)

    Article  Google Scholar 

  2. X. Sun, Y. Huang, M. Zong, H. Wu, X. Ding, Preparation of porous SnO2/ZnO nanotubes via a single spinneret electrospinning technique as anodes for lithium ion batteries. J. Mater. Sci. 27, 2682–2686 (2016)

    Google Scholar 

  3. V. Etacheri, R. Marom, R. Elazari, G. Salitra, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)

    Article  Google Scholar 

  4. B. Dunn, H. Kamath, J.M. Tarascon, Electrical Energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)

    Article  Google Scholar 

  5. S. Liu, J. Wang, J. Wang, F. Zhang, F. Liang, L. Wang, Controlled construction of hierarchical Co1–xS structures as high performance anode materials for lithium ion batteries. CrystEngComm 16, 814–819 (2014)

    Article  Google Scholar 

  6. H. Hwang, H. Kim, J. Cho, MoS2 nanoplates consisting of disordered graphene like layers for high rate lithium battery anode materials. Nano Lett. 11, 4826–4830 (2011)

    Article  Google Scholar 

  7. Y. Li, X. Hou, Y. Li, Q. Ru, S. Hu, K. Lam, The design and synthesis of polyhedral Ti-doped Co3O4 with enhanced lithium-storage properties for Li-ion batteries. J. Mater. Sci. 27, 11439–11446 (2016)

    Google Scholar 

  8. J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J.P. Lemmon, Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 22, 4522–4524 (2010)

    Article  Google Scholar 

  9. C.N.R. Rao, K. Gopalakrishnan, U. Maitra, Comparative study of potential applications of graphene MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl. Mater. Interfaces 7, 7809–7832 (2015)

    Article  Google Scholar 

  10. S. Ding, D. Zhang, J.S. Chen, X.W. Lou, Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 4, 95–98 (2012)

    Article  Google Scholar 

  11. Q.C. Pan, Y.G. Huang, H.Q. Wang, G.H. Yang, L.C. Wang, J.Q. Chen, Y. Li, MoS2/C Nanosheets encapsulated Sn@SnOx nanoparticles as high-performance lithium-iom battery anode material. Electrochim. Acta 197, 50–57 (2016)

    Article  Google Scholar 

  12. C. Zhang, H.B. Wu, Z.P. Guo, X.W. Lou, Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. Electrochem. Commun. 20, 7–10 (2012)

    Article  Google Scholar 

  13. H. Li, L. Ma, W.X. Chen, J.M. Wang, Synthesis of MoS2/C nanocomposites by hydrothermal route used as Li-ion intercalation electrode materials. Mater. Lett. 63, 1363–1365 (2009)

    Article  Google Scholar 

  14. K. Chang, W. Chen, L. Ma, H. Li, H. Li, F. Huang, Z. Xu, Q. Zhang, J.Y. Lee, Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium-ion batteries. J. Mater. Chem. 21, 6251–6257 (2011)

    Article  Google Scholar 

  15. S. Ding, J.S. Chen, X.W. Lou, Glucose-Assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. Chem. Eur. J. 17, 13142–13145 (2011)

    Article  Google Scholar 

  16. S.K. Park, S.H. Su, S. Woo, B. Quan, D.C. Lee, M.K. Kim, Y.E. Sung, Y. Piao, A simple l-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium-ion batteries. Dalton Trans. 42, 2399–2405 (2013)

    Article  Google Scholar 

  17. S. Wang, X. Jiang, H. Zhang, H. Wu, S. J. Kim, C. Feng, Solvothermal synthesis of MoS2/carbon nanotube composites with improved electrochemical performance for lithium ion batteries. Nanosci. Nanotechnol. Lett. 4, 378–383 (2012)

    Article  Google Scholar 

  18. Y.G. Guo, X. Zhou, L.J. Wan, Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage. Chem. Commun. 49, 1838–1840 (2013)

    Article  Google Scholar 

  19. K. Chang, W. Chen, l-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5, 4720–4728 (2011)

    Article  Google Scholar 

  20. K. Chang, W. Chen, In situ synthesis of mos2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 47, 4252–4254 (2011)

    Article  Google Scholar 

  21. C. Wang, W. Wan, Y. Huang, J. Chen, H.H. Zhou, X.X. Zhang, Hierarchical MoS2 nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries. Nanoscale 6, 5351–5358 (2014)

    Article  Google Scholar 

  22. L. Ma, X. Zhou, L. Xu, X. Xu, L. Zhang, Microwave-assisted hydrothermal preparation of SnO2/MoS2 composites and their electrochemical performance. Nano 11, 1650023–1650028 (2016)

    Article  Google Scholar 

  23. B. Song, X. Tang, L. Lu, J. Xue, Ultrasmall Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries. Small 10, 1536–1543 (2014)

    Article  Google Scholar 

  24. W. Zhuang, L.C. Li, J.H. Zhu, R. An, L.H. Lu, X.H. Lu, X.B. Wu, H.J. Ying, Facile synthesis of mesoporous MoS2-TiO2 nanofibers for ultrastable lithium ion battery anodes. ChemElectroChem 2, 374–381 (2015)

    Article  Google Scholar 

  25. X. D. Xu, W. Liu, Y. Kim, J. Cho, Nanostructured transition metal sulfides for lithium ion batteries: progress and challenges. Nano Today 9, 604–630 (2014)

    Article  Google Scholar 

  26. T. Takeshita, K.A. Gschneidner Jr., B.J. Beaudry, Preparation of γ-LaSy (1.33 < y < 1.50) alloys by the pressure-assisted reaction sintering method and their thermoelectric properties. J. Appl. Phys. 57, 4633–4637 (1985)

    Article  Google Scholar 

  27. C.M. Forster, W.B. White, Powder preparation and sintering characteristics of rare-earth sesquisulfide ceramics. J. Am. Ceram. Soc. 80, 273–276 (1997)

    Article  Google Scholar 

  28. C.M. Forster, W.B. White, Optical absorption edge in rare earth sesquisulfides. Mater. Res. Bull. 41, 448–454 (2006)

    Article  Google Scholar 

  29. S. Yu, D. Wang, Y. Liu, Z. Li, X. Zhang, Y. Wang, X. Wang, H. Su, Preparations and characterizations of γ-Ce2S3@SiO2 Pigments from precoated CeO2 with improved thermal and acid stabilities. RSC Adv. 4, 23653–23657 (2014)

    Article  Google Scholar 

  30. B.T. Hou, X.L. Wang, J.X. Wang, J. Yao, H.B. Zhang, W.S. Yu, G.X. Liu, X.T. Dong, L.M. Wang, In situ synthesis of homogeneous Ce2S3/MoS2 composites and their electrochemical performance for lithium ion batteries. RSC Adv. 7, 6309–6314 (2017)

    Article  Google Scholar 

  31. S.S. Zhang, K. Xu, T.R. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim. Acta 49, 1057–1061 (2004)

    Article  Google Scholar 

  32. J. Xiao, X. Wang, X.Q. Yang, S. Xun, G. Liu, P.K. Koech, J.P. Lemmon, Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv. Funct. Mater. 21, 2840–2846 (2011)

    Article  Google Scholar 

  33. S.K. Park, S.H. Yu, S. Woo, J. Ha, J. Shin, Y.E. Sung, Y. Piao, A facile and green strategy for the synthesis of MoS2 nanospheres with excellent Li-ion storage properties. CrystEngComm 14, 8323–8325 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Natural Science Foundation of Jilin Province (No. 20170101128JC), the Science and Technology Research Project of the Education Department of Jilin Province during the 13th 5-year plan period (No. 2016-359), the Youth Foundation of Changchun University of Science and Technology (Nos. XQNJJ-2014-13, XJJLG-2014-10), the Science and Technology Planning Project of Changchun City (No. 2013064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinlu Wang or Jinxian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, B., Wang, X., Yao, J. et al. Fabrication of Ce2S3/MoS2 composites via recrystallization-sulfurization method and their improved electrochemical performance for lithium-ion batteries. J Mater Sci: Mater Electron 28, 12297–12305 (2017). https://doi.org/10.1007/s10854-017-7047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7047-7

Navigation