Skip to main content
Log in

Controlled hydrothermal synthesis and excellent optical properties of two different kinds of CeO2 nanocubes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The CeO2 nanocubes have been successfully synthesized via a facile hydrothermal method. X-ray diffractometer, scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy (XPS), Raman scattering and photoluminescence spectra were employed to characterize the samples. The results showed that the CeO2 nanocubes have a cubic fluorite structure and the rugged CeO2 nanocubes with an edge length of about 200 nm transformed into smooth one with an edge length of about 70 nm with the change of the surfactant. XPS and Raman analyses indicate that there are Ce3+ ions and oxygen vacancies in the surface of samples. Both of nanocubes exhibit similar emission peaks of photoluminescence at room temperature and the emission intensity increases with the increase of the concentration of oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Y.B. Zeng, Z.Q. Li, Y.F. Liang, X.Q. Gan, M.M. Zheng, Inorg. Chem. 52, 9590 (2013)

    Article  Google Scholar 

  2. B. Xu, Q.T. Zhang, S.S. Yuan, M. Zhang, T. Ohno, Chem. Eng. J. 260, 126 (2015)

    Article  Google Scholar 

  3. R.C. Rao, M. Yang, C.S. Li, H.Z. Dong, S. Fang, A.M. Zhang, J. Mater. Chem. A 3, 782 (2015)

    Article  Google Scholar 

  4. Y. Zhang, C. Chen, W.B. Gong, J.Y. Song, H.M. Zhang, Y.X. Zhang, G.Z. Wang, H.J. Zhao, Catal. Commun. 93, 10 (2017)

    Article  Google Scholar 

  5. X.F. Niu, M. Li, B.M. Hao, H.Z. Li, J. Mater. Sci. 27, 6845 (2016)

    Google Scholar 

  6. N. Izu, T. Itoh, M. Nishibori, I. Matsubara, W. Shin, Sens. Actuators B 171, 350 (2012)

    Article  Google Scholar 

  7. Z.L. Zhan, S.A. Bamett, Science 308, 844 (2005)

    Article  Google Scholar 

  8. X.Y. Yang, X.J. Yu, G. Li, J. Mater. Sci. 279, 704 (2016)

    Google Scholar 

  9. Z. Yang, D. Han, D. Ma, H. Liang, L. Liu, Y. Yang, Cryst. Growth Des. 10, 291 (2010)

    Article  Google Scholar 

  10. J.F. Gong, F.M. Meng, X. Yang, Z.H. Fan, H.J. Li, J. Alloy. Compd. 689, 606 (2016)

    Article  Google Scholar 

  11. Y.C. Wu, X.S. Liu, K. Ur-Rehman, S. Jiang, C. Zhang, C.C. Liu, X.Y. Meng, H.H. Li, Mater. Lett. 183, 161 (2016)

    Article  Google Scholar 

  12. W. Gao, Z.Y. Zhang, J. Li, Y.Y. Ma, Y.Q. Qu, Nanoscale 7, 11686 (2015)

    Article  Google Scholar 

  13. C. Zhang, F.M. Meng, L.N. Wang, Mater. Lett. 119, 1 (2014)

    Article  Google Scholar 

  14. J.F. Gong, F.M. Meng, Z.H. Fan, H.J. Li, Electron, Mater. Lett 12, 846 (2016)

    Google Scholar 

  15. F.M. Meng, L.N. Wang, J.B. Cui, J. Alloy. Compd. 556, 102 (2013)

    Article  Google Scholar 

  16. H.Y. Xiao, Z.H. Ai, L.Z. Zhang, J. Phys. Chem. C 113, 16625 (2009)

    Article  Google Scholar 

  17. C. Paun, O.V. Safonova, J. Szlachetko, P.M. Abdala, M. Nachtegaal, J. Sa, E. Kleymenov, A. Cervellino, F. Krumeich, J.A.V. Bokhoven, J. Phys. Chem. C 116, 7312 (2012)

    Article  Google Scholar 

  18. N.S. Ferreira, R.S. Angélica, V.B. Marques, C.C.O. de Lima, M.S. Silva, Mater. Lett. 165, 139 (2016)

    Article  Google Scholar 

  19. S. Babu, R. Thanneeru, T. Inerbaev, R. Day, A.E. Masunov, A. Schulte, S. Seal, Nanotechnology 20, 085713 (2009)

    Article  Google Scholar 

  20. F.L. Liang, Y. Yu, W. Zhou, X.Y. Xu, Z.H. Zhu, J. Mater. Chem. A 3, 634 (2015)

    Article  Google Scholar 

  21. A. Younis, D. Chu, Y.V. Kaneti, S. Li, Nanoscale 8, 378 (2016)

    Article  Google Scholar 

  22. R.C. Deus, M. Cilense, C.R. Foschini, M.A. Ramirez, E. Longo, A.Z. Simões, J. Alloy. Compd. 550, 245 (2013)

    Article  Google Scholar 

  23. X.D. Li, J.G. Li, D. Huo, Z.M. Xiu, X.D. Sun, J. Phys. Chem. C 113, 1806 (2009)

    Article  Google Scholar 

  24. H.F. Xu, H. Li, J. Magn. Magn. Mater. 377, 272 (2015)

    Article  Google Scholar 

  25. J. Zdravković, B. Simović, A. Golubović, D. Poleti, I. Veljković, M. Šćepanović, G. Branković, Ceram. Int. 41, 1970 (2015)

    Article  Google Scholar 

  26. B. Choudhury, A. Choudhury, Mater. Chem. Phys. 131, 666 (2012)

    Article  Google Scholar 

  27. C.R. Li, M.Y. Cui, Q.T. Sun, W.J. Dong, Y.Y. Zheng, K. Tsukamoto, B.Y. Chena, W.H. Tang, J. Alloy. Compd. 504, 498 (2010)

    Article  Google Scholar 

  28. D.M. Han, Y. Yang, F.B. Gu, Z.H. Wang, J. Alloys Compd. 656, 524 (2016)

    Article  Google Scholar 

  29. F.M. Meng, J.F. Gong, Z.H. Fan, H.J. Li, J.T. Yuan, Ceram. Int. 42, 4700 (2016)

    Article  Google Scholar 

  30. S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri, Mater. Chem. Phys. 115, 423 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The research is partially supported by Foundation for National Science Foundation of China (Grant Nos. 11401008, 11601007), Young Talents in College of Anhui Province (Grant Nos. 2010SQRL053, 2012SQRL051), and Project funded by China Postdoctoral Science Foundation (No. 2016M592030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, J., Gao, J., Wei, H. et al. Controlled hydrothermal synthesis and excellent optical properties of two different kinds of CeO2 nanocubes. J Mater Sci: Mater Electron 28, 11029–11033 (2017). https://doi.org/10.1007/s10854-017-6886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6886-6

Keywords

Navigation