Skip to main content
Log in

A chemical synthesized Al-doped PbS nanoparticles hybrid composite for optical and electrical response

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Structural, morphological, optical and electrical investigations of pure and Al-doped lead sulfide (PbS) nanoparticles hybrid composite was synthesized by simple chemical route. The detail analysis of the nanoparticle morphology of hybrid composites through optical investigation, phase purity and crystalline size had been characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), ultraviolet spectroscopy (UV), photoluminescence (PL). The lower angle XRD results confirmed that the phase purity and average crystalline size of the pure and Al doped PbS nanoparticles were determined by using the Debye–Scherrer’s formula. The average grain sizes of the pure and the Al-doped PbS nanoparticles were calculated and found to be 22 and 16 nm respectively. Surface morphology analysis was carried out by using SEM and TEM analysis. The surface morphology of pure and Al doped PbS nanoparticles is without any pinholes or cracks and hence they appear to be densely packed with spherical shaped grains. The optical properties of pure and Al-doped PbS analyzed using UV–Vis. absorption spectroscopy and Photoluminiscence (PL) spectra. The band gap values for the pure and the Al-doped PbS nanoparticles were found to be 1.94 and 2.04 eV respectively. The dielectric properties of the Al-doped PbS nanoparticle composites typical response e.g. dielectric constant, dielectric loss, and AC conductivity were analyzed at various frequencies and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Lu, I. Li, W. Zhang, C. Wang, Nanotechnology 16, 2233 (2005)

    Article  Google Scholar 

  2. Z.I. Wang, Ann. Rev. Phys. Chem. 55, 159 (2004)

    Article  Google Scholar 

  3. C. Rajashree, A.R Balu, V.S Nagarethinam, J. Mater. Sci. Mater. Electron. 27, 5070 (2016)

    Article  Google Scholar 

  4. A.H. Souici, N. Keghouche, J.A. Delaire, H. Remita, A. Etcheberry, M. Mostafavi, J. Phys. Chem. C 113, 8050–8057 (2009)

    Article  Google Scholar 

  5. J.D. Patel, F. Mighri, Mater. Sci. Appl. 3, 125–130 (2012)

    Google Scholar 

  6. X. Zhao, I. Gorelikov, J. Langmuir. 21, 1086–1090 (2005)

    Article  Google Scholar 

  7. L.F. Koao, F.B. Dejene, H.C. Swart, Int J. Electrochem. Sci. 9, 1747–1757 (2014)

    Google Scholar 

  8. G.I. Koleilat, L. Levina, ACS Nano 2, 833–840 (2008)

    Article  Google Scholar 

  9. A. Dumbrava, D. Berger, G. Prodan, F. Moscalu, A. Diacon, Mater. Chem. Phys. 173, 70 (2016)

    Article  Google Scholar 

  10. T. Sivaraman, V. Narasimman, V.S. Nagarethinam, A.R. Balu, Prog. Nat. Sci. Mater. Int. 25, 392 (2015)

    Article  Google Scholar 

  11. T. Sivaraman, V.S. Nagarethinam, A.R. Balu, K. Usharani, J. Mater. Sci. Mater. Electron. 27, 1158 (2016)

    Article  Google Scholar 

  12. S.B. Pawar, J.S. Shaikh, R.S. Devan, Y.R. Ma, D. Heranath, P.N. Bhosale, P.S. Patil, Appl. Surf. Sci. 258, 1869 (2011)

    Article  Google Scholar 

  13. Y. Al-Douri, Q. Khasawneh, S. Kiwan, U. Hasim, S.B. Abd Hamid, A.H. Reshak, A. Bouhemadou, M. Ameri, R. Khenata, Energy Convers. Manage. 82, 238 (2014)

    Article  Google Scholar 

  14. S.J. Gnanamuthu, I.K. Punithavathy, S.J. Jeyakumar, K. Usharani, A.R. Balu, Mater. Res. Innov. 20, 398 (2016)

    Article  Google Scholar 

  15. S. Sagadevan, I. Das, J. Podder, J. Mater. Sci. 27, 13016–13021 (2016)

    Google Scholar 

  16. S. Sagadevan, K. Pal, P. Koteeswari, A. Subashini, J. Mater. Sci. (2017). doi:10.1007/s10854-017-6488-3

    Google Scholar 

  17. D.M.D.M. Prabaharan, K. Sadaiyandi, M. Mahendran, S. Sagadevan, Mater. Res. 19, 478–482 (2016)

    Article  Google Scholar 

  18. S. Sagadevan, I. Das, P. Singh, J. Podder, J. Mater. Sci. 28, 1136–1141 (2017)

    Google Scholar 

  19. S. Sagadevan, I. Das, K. Pal, P. Murugasen, P. Singh, J. Mater. Sci. (2016). doi:10.1007/s10854-016-6180-z

    Google Scholar 

  20. S. Sagadevana, J. Podder, Mater. Res. 19(2), 420–425, (2016)

    Article  Google Scholar 

  21. R. Sharma, P. Pahuja, R.P. Tandon, Ceram. Int. 40, 9027–9036 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Sagadevan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagadevan, S., Pal, K., Hoque, E. et al. A chemical synthesized Al-doped PbS nanoparticles hybrid composite for optical and electrical response. J Mater Sci: Mater Electron 28, 10902–10908 (2017). https://doi.org/10.1007/s10854-017-6869-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6869-7

Keywords

Navigation