Skip to main content
Log in

New insights into multi-hierarchical nanostructures with size-controllable blocking units for their gas sensing performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The assembly design of nanostructures has taken a dominated position in improving gas sensing properties. In our work, multi-hierarchical (nanoneedles assembled and nanosheets assembled) SnO2 nanostructures with size-controllable blocking units were synthesized via facile hydrothermal method. As is recorded, the addition of PVP led to the transformation from nanoneedles assembled nanostructures into nanosheets assembled nanostructures, which can be ascribed to linear molecule structures. While the sizes of the blocking units can be controlled by the temperature due to the Ostwald ripening. And seeing from the gas sensing measurement, the thinner ones had higher gas response and quicker gas response and recovery judging from the sizes of blocking units, at the same time, nanoneedles assembled hierarchical structures possessed higher gas response while nanosheets assembled hierarchical structures had shorter gas response and recovery time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Li, W. Zeng, New insight into the gas sensing performance of SnO2 Nanorod-assembled urchins based on their assembly density. Ceram. Int. 43, 728–735 (2017)

    Article  Google Scholar 

  2. F. Huber, S. Riegert, M. Madel, K. Thonke, H2S sensing in the ppb regime with zinc oxide nanowires. Sens. Actuators B 239, 358–363 (2017)

    Article  Google Scholar 

  3. M. Kaur, S. Kailasaganapathi, N. Ramgir, N. Datta, S. Kumar, A.K. Debnath et al., Gas dependent sensing mechanism in ZnO nanobelt sensor. Appl. Surf. Sci. 394, 258–266 (2017)

    Article  Google Scholar 

  4. S. Knobelspies, B. Bierer, A.O. Perez, J. Woellenstein, J. Kneer, S. Palzer, Low-cost gas sensing system for the reliable and precise measurement of methane, carbon dioxide and hydrogen sulfide in natural gas and biomethane. Sens. Actuators B 236, 885–892 (2016)

    Article  Google Scholar 

  5. A. Afkhami, H. Bagheri, Preconcentration of trace amounts of formaldehyde from water, biological and food samples using an efficient nanosized solid phase, and its determination by a novel. Microchim. Acta 176, 217–227 (2012)

    Article  Google Scholar 

  6. H. Bagheri, E. Ranjbari, M. Amiri-Aref, A. Hajian, Y.H. Ardakani, S. Amidi, Modified fractal iron oxide magnetic nanostructure: a novel and high performance platform for redox protein immobilization, direct electrochemistry and bioelectrocatalysis application. Biosens. Bioelectron. 85, 814–821(2016)

    Article  Google Scholar 

  7. H. Bagher, A. Afkhami, H. Khoshsafar, A. Hajian, A. Shahriyari, Protein capped Cu nanoclusters-SWCNT nanocomposite as a novel candidate of high performance platform for organophosphates enzymeless biosensor. Biosens. Bioelectron. 89, 829–836 (2017)

    Article  Google Scholar 

  8. H. Bagheri, A. Hajian, M. Rezaei, A. Shirzadmehr, Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J. Hazard Mater. 324, 762–772 (2017)

    Article  Google Scholar 

  9. J.M.H. Kroes, F. Pietrucci, K. Chikkadi, C. Roman, C. Hierold, W. Andreoni, The response of single-walled carbon nanotubes to NO2 and the search for a long-living adsorbed species. Appl. Phys. Lett. 108, 32–37 (2016)

    Article  Google Scholar 

  10. Y. Li, M. Hodak, W. Lu, J. Bernholc, Mechanisms of NH3 and NO2 detection in carbon-nanotube-based sensors: an ab initio investigation. Carbon 101, 177–183 (2016)

    Article  Google Scholar 

  11. G.H. Mhlongo, K. Shingange, Z.P. Tshabalala, B.P. Dhonge, F.A. Mahmoud, B.W. Mwakikunga et al., Room temperature ferromagnetism and gas sensing in ZnO nanostructures: Influence of intrinsic defects and Mn, Co, Cu doping. Appl. Surf. Sci. 390, 804–815 (2016)

    Article  Google Scholar 

  12. H. Long, W. Zeng, H. Zhang, The solvothermal synthesis of the cobweb-like WO3 and its enhanced gas-sensing property. Mater. Lett. 188, 334–337 (2017)

    Article  Google Scholar 

  13. V. Nagarajan, R. Chandiramouli, DFT Studies on Interaction of H2S Gas with alpha-Fe2O3 Nanostructures. J. Inorg. Organomet. P. 26, 394–404(2016)

    Article  Google Scholar 

  14. G.S. Rao, T. Hussain, M.S. Islam, M. Sagynbaeva, D. Gupta, P. Panigrahi et al., Adsorption mechanism of graphene-like ZnO monolayer towards CO2 molecules: enhanced CO2 capture. Nanotechnology 27, 015502 (2016)

    Article  Google Scholar 

  15. Y. Zhang, W. Zeng, New insight into gas sensing performance of nanoneedle-assembled and nanosheet-assembled hierarchical NiO nanoflowers. Mater. Lett. 195, 217–219 (2017)

    Article  Google Scholar 

  16. D. Wang, Y. Chen, Z. Liu, L. Li, C. Shi, H. Qin et al., CO2-sensing properties and mechanism of nano-SnO2 thick-film sensor. Sens. Actuators B 227, 73–84 (2016)

    Article  Google Scholar 

  17. F. Schipania, D.R. Millera, M.A. Ponce, C.M. Aldaob, S.A. Akbara, P.A. Morrisa, J.C. Xu, Sens. Actuators B 241, 99–108 (2017)

    Article  Google Scholar 

  18. Q.J. Wang, F.M. Liu, J. Lin, G.Y. Lu, Gas-sensing properties of In–Sn oxides composites synthesized by hydrothermal method. Sens. Actuators B. 234, 130–136 (2016)

    Article  Google Scholar 

  19. C.W. Na, H.S. Woo, I.D. Kim, J.H. Lee, Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. Chem. Commun. 47, 50–5148 (2011)

    Article  Google Scholar 

  20. H. Bagheri, N. Pajooheshpour, B. Jamali, S. Amidi, A. Hajian, H. Khoshsafar, A novel electrochemical platform for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4-SnO2-Gr ternary nanocomposite. Microchem. J. 131, 120–129 (2017)

    Article  Google Scholar 

  21. H. Zeinali, H. Bagheri, Z. Monsef-Khoshhesa, H. Khoshsafar, A. Hajian, Nanomolar simultaneous determination of tryptophan and melatonin by a new ionic liquid carbon paste electrode modified with SnO2-Co3O4@rGO nanocomposite. Mater. Sci. Eng. C 71, 386–394 (2017)

    Article  Google Scholar 

  22. J.R. Huang, Y.J. Wu, C.P. Gu, M.H. Zhai, K. Yu, M. Yang, Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property. Sens. Actuators B. 146, 12–206 (2010)

    Google Scholar 

  23. T. Zhou, X.J. Jiang, C. Zhong, X.X. Tang, S.S. Ren, Y. Zhao, M.J. Liu, X. Lai, J. Bi, D.J. Gao, Hydrothermal synthesis of controllable size, morphology and optical properties of b-NaGdF4:Eu3+ microcrystals. J. Lumin. 175, 1–8 (2016)

    Article  Google Scholar 

  24. Y.X. Guo, S.W. Lin, X. Li, Y.P. Liu, Amino acids assisted hydrothermal synthesis of hierarchically structured ZnO with enhanced photocatalytic activities. Appl. Surf. Sci. 384, 83–91 (2016)

    Article  Google Scholar 

  25. A. Mirzaei, G. Neri, Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application, A review. Sens. Actuators B 237, 749–775 (2016)

    Article  Google Scholar 

  26. B. Mondal, S. Maity, S. Das, D. Panda, H. Saha, A. Kundu, Fabrication and packaging of MEMS based platform for hydrogen sensor using ZnO-SnO2 composites. Microsyst. Technol. 22, 2757–2764 (2016)

    Article  Google Scholar 

  27. H. Wang, Q. Liang, W. Wang et al., Preparation of flower-like SnO2 nanostructures and their applications in gas-sensing and lithium storage. Cryst. Growth Des. 11, 2942–2947 (2011)

    Article  Google Scholar 

  28. L. Wang, T. Fei, J. Deng et al., Synthesis of rattle-type SnO2 structures with porous shells. J. Mater. Chem. 22, 18111–18114 (2012)

    Article  Google Scholar 

  29. D. Chen, J. Xu, Z. Xie et al., Nanowires assembled SnO2 nanopolyhedrons with enhanced gas sensing properties. ACS Appl. Mater. Interfaces 3, 2112–2117 (2011)

    Article  Google Scholar 

  30. Y. Bing, Y. Zeng, C. Liu et al., Synthesis of double-shelled SnO2 nano-polyhedra and their improved gas sensing properties. Nanoscale 7, 3276–3284 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2016jcyjA0006) and Graduate Scientific Research and Innovation Foundation of Chongqing, China (Grant No. CYS16008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zeng, W. New insights into multi-hierarchical nanostructures with size-controllable blocking units for their gas sensing performance. J Mater Sci: Mater Electron 28, 10847–10852 (2017). https://doi.org/10.1007/s10854-017-6862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6862-1

Keywords

Navigation