Skip to main content
Log in

Effect of cooling rate on microstructure and microwave dielectric properties of MgO doped (Sr,Ca)TiO3-(Sm,Nd)AlO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of MgO additive on phase composition, microstructure, sintering behavior, and microwave dielectric properties of 0.7(Sr0.01Ca0.99)TiO3-0.3(Sm0.75Nd0.25)AlO3 (7SCT-3SNA) ceramics prepared via conventional solid-state route were systematically investigated. MgO as additive showed no obvious influence on the phase composition of 7SCT-3SNA ceramics and all the samples exhibited pure perovskite structures. The presence of MgO additive effectively reduced the sintering temperature of 7SCT-3SNA ceramics from 1500 to 1380 °C. Besides, it is found that 0.5 wt% MgO could improve the uniformity of the grain morphology significantly, thus Q × f value enhanced consequently. Results also showed that enhanced Q × f value could be obtained as cooling rate slowed down. Superior microwave dielectric properties with an ε r of 44.96, a Q × f value of 45738 GHz (at 5.5 GHz), and τ f value of −2.46 ppm/°C are obtained for 0.5 wt% MgO doped 7SCT-3SNA ceramics sintered at 1380 °C with a cooling rate of 60 °C/h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.K. Tyagi, Synthesis and characterization of ceramic dielectric resonator materials for microwave communication technology. Proced. Mater. Sci. 5, 1322–1331 (2014)

    Article  Google Scholar 

  2. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks, J. Am. Ceram. Soc. 89 2063–2072 (2006)

    Google Scholar 

  3. C.H. Su, Y.S. Wang, C.L. Huang, Characterization and microwave dielectric properties of Mg2YVO6 ceramic. J. Alloys Compds. 641 93–98 (2015)

    Article  Google Scholar 

  4. N.X. Xu, J.H. Zhou, H. Yang, Structural evolution and microwave dielectric properties of MgO-LiF co-doped Li2TiO3 ceramics for LTCC applications. Ceram. Int. 40 15191–15198 (2014)

    Article  Google Scholar 

  5. L.X. Pang, W.G. Liu, D. Zhou, Novel glass-free low-temperature fired microwave dielectric ceramics: Bi(Ga1/3Mo2/3)O4. Ceram. Int. 42 4574–4577 (2016)

    Article  Google Scholar 

  6. X.S. Lv, L.X. Li, H. Sun, Microwave dielectric properties of novel temperature stable high Q MgZr1 + xNb2O8 + 2x ceramics. Ceram. Int. 41 15287–15291 (2015)

    Article  Google Scholar 

  7. B. Jancar, D. Suvorov, M. Valant, Characterization of CaTiO3-NdAlO3 dielectric ceramics. J. Eur. Ceram. Soc. 23 1391–1400 (2003)

    Article  Google Scholar 

  8. E.R. Kipkoech, F. Azough, R. Freer, Structural study of Ca0.7Nd0.3Ti0.7Al0.3O3 dielectric ceramics using synchrotron X-ray diffraction. J. Eur. Ceram. Soc. 23 2677–2682 (2003)

    Article  Google Scholar 

  9. Y. B. Chen, New dielectric material system of Nd(Mg1/2Ti1/2)O3-SrTiO3 in the microwave frequency range. J. Alloys Compds. 509 2285–2288 (2011)

    Article  Google Scholar 

  10. F. Liang, M. Ni, W. Lu, Microwave dielectric properties and crystal structures of 0.7CaTiO3-0.3[LaxNd(1–x)]AlO3 ceramics. J. Alloys Compds. 568 11–15 (2013)

    Article  Google Scholar 

  11. B. Jančar, D. Suvorov, M. Valant, Microwave dielectric properties of CaTiO3-NdAlO3 ceramics. J. Mater. Sci. Lett. 20 71–72 (2001)

    Article  Google Scholar 

  12. Q.X. Jiang, W.T. Xie, Q.L. Cao, Microwave dielectric properties of 0.7(SryCa1–y)TiO3-0.3(SmxNd1–x)AlO3 ceramics with near-zero temperature coefficient. J. Mater. Sci. 27 7674–7679 (2016)

    Google Scholar 

  13. G.A. Ravi, F. Azough, R. Freer, Effect of Al2O3 on the structure and microwave dielectric properties of Ca0.7Ti0.7La0.3Al0.3O3. J. Eur. Ceram. Soc. 27 2855–2859 (2007)

    Article  Google Scholar 

  14. J. Zheng, C. Zhang, Z. Xiong, Influence of CuO or MnCO3 additive on the dielectric properties of Ca0.65Ti0.65La0.35Al0.35O3 ceramics. J. Phys. 152 012062 (2009)

    Google Scholar 

  15. J. Li, B. Yao, D. Xu, Low temperature sintering and microwave dielectric properties of 0.4Nd(Zn0.5Ti0.5)O3-0.6Ca0.61Nd0.26TiO3 ceramics with BaCu(B2O5) additive. J. Alloys Compds. 663 494–500 (2016)

    Article  Google Scholar 

  16. B. Tang, Z. Fang, H. Li, Microwave dielectric properties of H3BO3-doped Ca0.61La0.39Al0.39Ti0.61O3 ceramics. J. Mater. Sci. 26 300–306 (2015)

    Google Scholar 

  17. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range, IRE Trans. Microw. Theory Tech. 8 402–410 (1960)

    Article  Google Scholar 

  18. W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators, IEEE Trans. Microw. Theory Tech. 18476–485 (1970)

    Article  Google Scholar 

  19. A. J. Bosman, E. E. Havinga. Temperature dependence of dielectric constants of cubic ionic compounds. Phys. Rev. 129 1593 (1963)

    Article  Google Scholar 

  20. M.T. Sebastian, Dielectric Materials for Wireless Communications, 1st edn. (Elsevier Publishers, Oxford, 2008)

    Google Scholar 

  21. H. Tamura, Microwave dielectric losses caused by lattice defects. J. Eur. Ceram. Soc. 26 1775–1780 (2006)

    Article  Google Scholar 

  22. L. Qian, H.Q. Zhou, Q.X. Jiang, Effect of MgO, BaO and La2O3 additions on microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics. J. Mater. Sci. 27(6), 6183–6187 (2016)

    Google Scholar 

  23. T.A. Vanderah. Talking ceramics. Science, 298 1182–1184 (2002)

    Article  Google Scholar 

  24. B. Sandeep, K. Ajit, P. Om, G. Sumesh, M.T. Sebastian, High Q microwave dielectric ceramics in (Ni1–xZnx)Nb2O6 system. J. Am. Ceram. Soc. 92 1047–1053 (2009)

    Article  Google Scholar 

  25. S.R. Kiran, G. Sreenivasulu, V.R.K. Murthy, Effect of grain size on the microwave dielectric characteristics of high-energy ball-milled zinc magnesium titanate ceramics. J. Am. Ceram. Soc. 95 1973–1979 (2012)

    Article  Google Scholar 

  26. N. Ichinose, T. Shimada, Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba ([Mg, Zn]1/3Ta2/3)O3 systems. J. Eur. ceram. Soc. 26 1755–1759 (2006)

    Article  Google Scholar 

  27. A. E. McHale, R. S. Roth, Low-temperature phase-relationships in the system ZrO2-TiO2. J. Am. Ceram. Soc. 69 827–832 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support of the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD) and the Program for Advanced Research and Key Technology in Industry of Jiangsu Province (BE2015007-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Jiang, Q., Cao, Q. et al. Effect of cooling rate on microstructure and microwave dielectric properties of MgO doped (Sr,Ca)TiO3-(Sm,Nd)AlO3 ceramics. J Mater Sci: Mater Electron 28, 6407–6412 (2017). https://doi.org/10.1007/s10854-016-6325-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6325-0

Keywords

Navigation