Skip to main content
Log in

Electrical and optical properties of nanocrystalline RE–Ti–Nb–O6 (RE = Ce, Pr, Nd and Sm) electronic material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nano-crystalline RETiNbO6 (RE = Ce, Pr, Nd and Sm) is successfully synthesized through the solution combustion technique. The XRD analysis revealed that the materials have orthorhombic aeschynite structure with space group Pnma. The particle size determined from XRD and TEM shows that the samples are nano-crystalline. Structure is confirmed by the analysis of FT-Raman, the fourier transform infrared spectra and surface morphology by SEM micrograph. The optical properties, dielectric characteristics at radio frequency range and complex impedance of the system are also studied. Percentage of rare earth in each compound, sintering temperature and density achieved are calculated. The UV–Vis spectra show that the materials can be used as a protective material from UV radiation due to high absorbance in that region. These compounds show strong emission in violet and green regions in the photoluminescence spectrum. The compounds are useful in communication systems due to low dielectric loss and high dielectric constant. The high ionic conductivity suggests that the material can be used as electrolyte in solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C.F. Lin, H.H. Lu, T.I. Changa, J.L. Huang, J. Alloy Compd. 407, 318–325 (2006)

    Article  Google Scholar 

  2. M.T. Sebastian, S. Solomon, R. Ratheesh, J. Am. Ceram. Soc. 84, 1487–1489 (2001)

    Article  Google Scholar 

  3. Komkov I, Dokl. Acad. Nauk. SSSR 148 1182–1183 (1963).

    Google Scholar 

  4. S. Solomon, J.T. Joseph, H.P. Kumar, J.K. Thomas, J. Mater. Lett. 60, 2814–2818 (2006)

    Article  Google Scholar 

  5. D. Dhak, P. Dhak, T. Ghorai, S.K. Biswas, P. Pramanik, J. Mater. Sci. Mater. Electron 19, 448–456 (2008)

    Article  Google Scholar 

  6. L. Jacob, H. Padmakumar, K.G. Gopchandran, J.K. Thomas, S. Solomon, J. Mater. Sci. Mater. Electron 18(8), 831–835 (2007)

    Article  Google Scholar 

  7. H.P. Kumar, J.K. Thomas, M.R. Varma, S. Solomon, J. Alloy Compd. 455, 475–479 (2008)

    Article  Google Scholar 

  8. T. Dechakupt, J. Tangsritrakul, P. Ketsuwan, R. Yimnirun, J. Ferroelectr. 415, 141–148 (2011)

    Article  Google Scholar 

  9. F. Qasrawi, A. Hussein, A. Jeib, A. Mergen, J. Ceram. Process Res. 13, 446–450 (2012)

    Google Scholar 

  10. K.R. Sahu, U. De, J. Mater. 2013, 15 (2013)

    Google Scholar 

  11. J.G. Fisher, S.-H. Jang, M.-S. Park, H. Sun, S.-H. Moon, J.-S. Lee, A. Hussain, Ceram. Mater. 8, 8183–8194 (2015)

    Article  Google Scholar 

  12. R. Gupta, S. Verma, V. Singh, K.K. Bamzai, J. Ceram. 2015, 835150 (2015)

    Google Scholar 

  13. W. Kern, R.S. Rosler, J. Vac. Sci. Technol. 14, 1082 (1977)

    Article  Google Scholar 

  14. L.P.S. Santos, E.R. Camargo, M.T. Fabbro, E. Longo, E.R. Leite, J. Ceram. Int. 33, 1205–1209 (2007)

    Article  Google Scholar 

  15. S. Satapathya, K.B.R. Varma, J. Cryst. Growth 291, 232–238 (2006)

    Article  Google Scholar 

  16. Z. Xiu, M. Lou, S. Liu, G. Zhou, H. Zhang, J. Alloy Compd. 416, 236–238 (2006)

    Article  Google Scholar 

  17. C. Chang, Z. Yuan, D. Mao, J. Alloy Compd. 415, 220–224(2006)

    Article  Google Scholar 

  18. A.K. Tyagi, S.V. Chavanand, R.D. Purohit, Indian J. Pure Appl. Phys. 44, 113–118 (2006)

    Google Scholar 

  19. B. Corradi, F. Bondioli, A.M. Ferrari, T. Manfredini, J. Mater. Res. Bull. 41, 38–44 (2006)

    Article  Google Scholar 

  20. A.K. Tyagi, R.D. Purohit, IANCAS Bull. 6, 120–131 (2007)

  21. A.V. Murugan, A.B. Gaikwad, V. Samuel, V. Ravi, Bull. Mater. Sci. 29, 221–223 (2006)

    Article  Google Scholar 

  22. K.C. Patil, S.T. Aruna, T. Mimani, Curr. Opin. Sol. State Mater. Sci. 6, 507–551 (2002)

    Article  Google Scholar 

  23. D.P. Tunstall, S. Patou, R.S. Liu, Y.H. Kao, J. Mater. Res. Bull. 34, 1513–1520 (1999)

    Article  Google Scholar 

  24. G.K. Williamson, W.H. Hall, Acta Metall. 1 22–31(1953)

    Article  Google Scholar 

  25. S.J. Chipera, L.D. Bish, in Advances in X-ray Analysis, vol. 34. (Plenum, NewYork, 1991), pp. 325–335

    Book  Google Scholar 

  26. X. Qi, R. Illingworth, H.G. Gallangher, T.P.J. Hun, B. Henderson, J. Cryst. Growth 160, 111–118 (1996)

    Article  Google Scholar 

  27. X. Qi, R. Illingworth, H.G. Gallangher, T.P.J. Hun, B. Henderson, J. Cryst. Growth 180, 73–80 (1997)

    Article  Google Scholar 

  28. X. Qi, T.P.J. Hun, H.G. Gallangher, B. Henderson, R. Illingworth, I.S. Ruddock, J. phys. Condens. Matter 8, 4837 (1996)

    Article  Google Scholar 

  29. S. Joseph, M.K. Suresh, J.K. Thomas, A. John, S. Solomon, Int. J. Appl. Ceram. Technol. 7, E129–E134 (2010)

    Article  Google Scholar 

  30. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn. (Wiley, New York, 1986)

    Google Scholar 

  31. H. Gleiter, Nanostructured materials: basic concept and microstructure. Acta Mater. 48, 1–29 (2000)

    Article  Google Scholar 

  32. N.L.A. Junior, A.Z. Simoes, A.A. Cavalheiro, S.M. Zanetti, E. Longoa, J.A. Arela, J. Alloy Compd. 454, 61–65 (2008)

    Article  Google Scholar 

  33. E.I. Suvorova, P.A. Buffat, Eur. Cell Mater. 1, 27–42 (2001)

    Article  Google Scholar 

  34. D.B. Dhwajam, J.K. Thomas, K. Joy, S. Solomon, J. Mater. Sci. Mater. Electron 22, 384 (2011)

    Article  Google Scholar 

  35. R. Payling, P. Larkins, Optical Emission Lines Of Elements, 1st edn. (Wiley, New York, 2000)

    Google Scholar 

  36. J.C. Maxwell, A treatise on Electricity and Magnetism, vol 2 (Oxford University Press, Oxford, 1954), p. 328

    Google Scholar 

  37. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Kerala State Council for Science, Technology and Environment, Government of Kerala for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Solomon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, F., John, A., Thomas, J.K. et al. Electrical and optical properties of nanocrystalline RE–Ti–Nb–O6 (RE = Ce, Pr, Nd and Sm) electronic material. J Mater Sci: Mater Electron 28, 5997–6007 (2017). https://doi.org/10.1007/s10854-016-6275-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6275-6

Keywords

Navigation