Skip to main content
Log in

Fabrication, microstructures, luminescent and magnetic properties of LiFe(WO4)2 microcrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Monoclinic LiFe(WO4)2 microcrystals have been fabricated by solid-state ceramic method. Microstructures, luminescent and magnetic properties of the as- fabricated microcrystals were characterized by X-ray diffraction, scanning electron microscopy, photoluminescence spectroscopy and Vibrating Sample Magnetometer. Influence of sintering temperature and sintering time on the microstructures, luminescent and magnetic properties of LiFe(WO4)2 microcrystals were studied. Below the sintering temperature 800 °C, the prepared samples exhibited spherical-like morphology. The crystallinity and purity of the microcrystals increased with increasing the sintering temperature. At higher 800 °C, the observed morphology of the obtained microcrystalline turned to be rods-like. All the LiFe(WO4)2 microcrystals exhibit the alike broad emission peak centered at 390 nm under excitation of 242 nm ultraviolet light except for difference in emission intensity. Due to the good crystallinity and microstructures, LiFe(WO4)2 microcrystals fabricated at 800 °C possess the maximum emission intensity. On the premise of the optimal sintering temperature (800 °C) and the predetermined range of sintering time (1–9 h), the sintering time has little influence on the microstructures and luminescent properties of the LiFe(WO4)2 microcrystals. In addition, all the well crystallized LiFe(WO4)2 microcrystals exhibit paramagnetism at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Liao, D. Zhou, H. You, H. Wen, Q. Zhou, B. Yang, Hydrothermal synthesis and photoluminescence of NaGd(MoO4)2:Tb3+ novel green phosphor. Optik 124, 1362–1365 (2013)

    Article  Google Scholar 

  2. T. Liu, Q. Meng, W. Sun, Luminescence properties of NaY(WO4)2: Sm3+, Eu3+ phosphors prepared by molten salt method. J. Lumin. 170, 219–225 (2016)

    Article  Google Scholar 

  3. J. Liao, H. You, D. Zhou, H. Wen, R. Hong, Sol–gel preparation and photoluminescence properties of LiLa(MoO4)2:Eu3+ phosphors. Opt. Mater. 34, 1468–1472 (2012)

    Article  Google Scholar 

  4. C.S. Lim, Microwave sol–gel process of KGd(WO4)2:Ho3+/Yb3+ phosphors and their upconversion photoluminescence properties. J. Phys. Chem. Solids 78, 65–69 (2015)

    Article  Google Scholar 

  5. J. Liao, B. Qiu, H. Lai, Synthesis and luminescence properties of Tb3+: NaGd(WO4)2 novel green phosphors. J. Lumin. 129, 668–671 (2009)

    Article  Google Scholar 

  6. J. Huang, J. Xu, H. Luo, Y. Li, X. Yu, Effect of alkali-metal ions on the local structure and luminescence for double tungstate compounds AEu(WO4)2 (A = Li, Na, K). Inorg. Chem. 50, 11487–11492 (2011)

    Article  Google Scholar 

  7. X. Gao, Y. Wang, D. Wang, B. Liu, Luminescent properties of KGd1–x(WO4)2:Eux 3+ and KGd1–x(WO4)2–y(MoO4)y: Eux 3+ phosphors in UV-VUV regions. J. Lumin. 129, 840–843 (2009)

    Article  Google Scholar 

  8. J. Liao, H. You, B. Qiu, H. Wen, R. Hong, W. You, Z. Xie, Photoluminescence properties of NaGd(WO4)2: Eu3+ nanocrystalline prepared by hydrothermal method. Curr. Appl Phys. 11, 503–507 (2011)

    Article  Google Scholar 

  9. C.S. Lim, Microwave-modified sol–gel process of NaY(WO4)2:Ho3+/Yb3+ phosphors and the upconversion of their photoluminescence properties. Ceram. Int. 41, 2616–2621 (2015)

    Article  Google Scholar 

  10. F. Mo, L. Zhou, Q. Pang, F. Gong, Z. Liang, Potential red-emitting NaGd(MO4)2: R (M = W, Mo, R = Eu3+, Sm3+, Bi3+) phosphors for white light emitting diodes applications. Ceram. Int. 38, 6289–6294 (2012)

    Article  Google Scholar 

  11. S. Huang, D. Wang, C. Li, L. Wang, X. Zhang, Y. Wan, P. Yang, Controllable synthesis, morphology evolution and luminescence properties of NaLa(WO4)2 microcrystals. Cryst. Eng. Comm. 14, 2235–2244 (2012)

    Article  Google Scholar 

  12. A. Durairajan, D. Thangaraju, S. Moorthy Babu, M.A. Valente, Luminescence characterization of sol–gel derived Pr3+ doped NaGd(WO4)2 phosphors for solid state lighting applications. Mater. Chem. Phys. 179, 295–303 (2016)

    Article  Google Scholar 

  13. K. Kavi Rasu, D. Balaji, S. Moorthy Babu, Spectroscopic properties of Eu3+:KLa(WO4)2 novel red phosphors. J. Lumin. 170, 547–555 (2016)

    Article  Google Scholar 

  14. D. Thangaraju, S. Moorthy Babu, A. Durairajan, D. Balaji, P. Samuel, Y. Hayakawa, Growth, vibrational and luminescence analysis of monoclinic KGd(1–x)Prx(WO4)2 (x = 0. 005, 0. 02, 0.05) single crystals. J. Cryst. Growth 362, 319–323 (2013)

    Article  Google Scholar 

  15. D. Thangaraju, A. Durairajan, D. Balaji, S. Moorthy Babu, Y. Hayakawa, Novel KGd1–(x+y)EuxBiy(W1–zMozO4)2 nanocrystalline red phosphors for tricolor white LEDs. J. Lumin. 134, 244–250 (2013)

    Article  Google Scholar 

  16. A. Durairajan, J. Suresh Kumar, D. Thangaraju, M.A. Valente, S. Moorthy Babu, Photoluminescence properties of sub-micron NaGd1–xEux(WO4)2 red phosphor for solid state lightings application: Derived by different synthesis routes. Superlattices Microstruct. 93, 308–321 (2016)

    Article  Google Scholar 

  17. Q.-F. Wang, Y. Liu, Y. Wang, W. Wang, Y. Wan, G.-G. Wang, Z.-G. Lu, Considerable photoluminescence enhancement of LiEu(MoO4)2 red phosphors via Bi and/or Si doping for white LEDs. J. Alloys Compd. 625, 355–361 (2015)

    Article  Google Scholar 

  18. Z. Li, X. Zhao, Y. Jiang, Hydrothermal preparation and photoluminescent property of LiY(MoO4)2:Pr3+ red phosphors for white light-emitting diodes. J. Rare Earths 33, 33–36 (2015)

    Article  Google Scholar 

  19. Y. Liu, Y. Wang, L. Wang, Y. Gu, S. Yu, Z. Lu, R. Sun, General synthesis of LiLn(MO4)2:Eu3+ (Ln = La, Eu, Gd, Y; M = W, Mo) nanophosphors for near UV-type LEDs. RSC Adv. 4, 4754–4762 (2014)

    Article  Google Scholar 

  20. X. Zhou, T. Zhou, Y. Li, Q. Feng, LiY1–xEux(MoO4)2 as a promising red-emitting phosphor of WLEDs synthesized by sol–gel process. J. Rare Earths 30, 315–319 (2012)

    Article  Google Scholar 

  21. Y. Zhang, W. Gong, J. Yu, Y. Lin, G. Ning, Tunable white-light emission via energy transfer in single-phase LiGd(WO4)2:Re3+ (Re = Tm, Tb, Dy, Eu) phosphors for UV-excited WLEDs. RSC Adv. 5, 96272–96280 (2015)

    Article  Google Scholar 

  22. M. Derbal, L. Guerbous, O. Djamel, C.J. Pierre, M. Kadi-Hanifi, Optical properties of LiIn(1–x)Tmx(WO4)2 blue phosphor. Adv. Condens. Matter Phys. 327605, 8 (2009)

    Google Scholar 

  23. D. Saha, G. Madras, A.J. Bhattacharyya, T.N. Guru Row, Synthesis, structure and ionic conductivity in scheelite type Li0·5Ce0·5–xLnxMoO4 (x = 0 and 0·25, Ln = Pr, Sm). J. Chem. Sci. 123, 5–13 (2011)

    Article  Google Scholar 

  24. L. Guerbous, M. Derbal, J.P. Chaminade, Photoluminescence and energy transfer of Tm3+ doped LiIn(WO4)2 blue phosphors. J. Lumin. 130, 2469–2475 (2010)

    Article  Google Scholar 

  25. K. Hermanowicz, M. Maczka, P.E. Tomaszewski, L. Krajczyk, J. Hanuza, J. Baran, Size dependent structural, vibrational, and luminescence properties of nanocrystalline LiIn(WO4)2:Cr3+. J. Nanosci. Nanotechnol. 8, 1–10 (2008)

    Article  Google Scholar 

  26. J. Lv, Z. Zhao, Z. Li, J. Ye, Z. Zou, Preparation and photocatalytic property of LiCr(WO4)2. J. Alloys Compd. 485, 346–350 (2009)

    Article  Google Scholar 

  27. C. Li, Z. Fu, Electrochemical characterization of amorphous LiFe(WO4)2 thin films as positive electrodes for rechargeable lithium batteries. Electromica Acta 53, 6434–6443 (2008)

    Article  Google Scholar 

  28. N. Chen, Y. Yao, D. Wang, Y. Wei, X. Bie, C. Wang, G. Chen, F. Du, LiFe(MoO4)2 as a novel anode material for lithiun-ion batteries. Appl. Mater. Interfaces 6, 10661–10666 (2014)

    Article  Google Scholar 

  29. F. Ji, C. Li, J. Zhang, L. Deng, Heterogeneous photo-Fenton decolorization of methylene blue over LiFe(WO4)2 catalyst. J. Hazard. Mater. 186, 1979–1984 (2011)

    Article  Google Scholar 

  30. F. Ji, C. Li, J. Zhang, L. Deng, Efficient decolorization of dye pollutants with LiFe(WO4)2 as a reusable heterogeneous Fenton-like catalyst. Desalination 269, 284–290 (2011)

    Article  Google Scholar 

  31. M. Devi, U.V. Varadaraju, Lithium insertion in lithium iron molybdate. Electrochem. Commun. 18, 112–115 (2012)

    Article  Google Scholar 

  32. Y. Ding, S. Yu, C. Liu, Z. Zang, 3D architectures of iron molybdate: phase selective synthesis, growth mechanism, and magnetic properties. Chem. Eur. J. 13, 746–753 (2007)

    Article  Google Scholar 

  33. L. Zhang, X. Cao, Y. Ma, X. Chen, Z. Xue, Pancake-like Fe2(MoO4)3 microstructures: microwave-assisted hydrothermal synthesis, magnetic and photocatalytic properties. New J. Chem. 34, 2027–2033 (2010)

    Article  Google Scholar 

  34. Z. Zhang, C. Hu, M. Hashim, P. Chen, Y. Xiong, C. Zhang, Synthesis and magnetic property of FeMoO4 nanorods. Mater. Sci. Eng. B 176, 756–761 (2011)

    Article  Google Scholar 

  35. M.A.P. Almeida, L.S. Cavalcante, C. Morilla-Santos, P.N. Lisboa Filho, A. Beltrán, J. Andrés, L. Gracia, E. Longo, Electronic structure and magnetic properties of FeWO4 nanocrystals synthesized by the microwave-hydrothermal method. Mater. Charact. 73, 124–129 (2012)

    Article  Google Scholar 

  36. L. Nyam-Ochir, H. Ehrenberg, A. Buchsteiner, A. Senyshyn, H. Fuess, D. Sangaa, The magnetic structures of double tungstates, NaM(WO4)2, M = Fe, Cr: examples for superexchange couplings mediated by [NaO6]-octahedra. J. Magn. Magn. Mater. 320, 3251–3255 (2008)

    Article  Google Scholar 

  37. A. Sarapulova, D. Mikhailova, A. Senyshyn, H. Ehrenberg, Crystal structure and magnetic properties of Li, Cr-containing molybdates Li3Cr(MoO4)3, LiCr(MoO4)2 and Li1.8Cr1.2(MoO4)3. J. Solid State Chem. 182, 3262–3268 (2009)

    Article  Google Scholar 

  38. L. Guo, Y. Wang, Y. Wang, J. Zhang, P. Dong, Crystal structure and up- and down-conversion properties of Yb3+, Ho3+codoped BaGdF5 solid-solution with different morphologies. Cryst. Eng. Comm. 14, 3131–3141 (2012)

    Article  Google Scholar 

  39. J. Ungelenk, S. Roming, P. Adler, W. Schnelle, J. Winterlik, C. Felser, C. Feldmann, Ultrafine MnWO4 nanoparticles and their magnetic properties. Solid State Sci. 46, 89–94 (2015)

    Article  Google Scholar 

  40. S. Shanmugapriya, S. Surendran, V.D. Nithya, P. Saravanan, R. Kalai Selvan, Temperature dependent electrical and magnetic properties of CoWO4 nanoparticles synthesized by sonochemical method. Mater. Sci. Eng. B 214, 57–67 (2016)

    Article  Google Scholar 

  41. D. Thangaraju, A. Durairajan, S. Moorthy Babu, Y. Hayakawa, Characterization of paramagnetic KHo(WO4)2 nanocrystals: synthesized by polymeric mixed-metal precursor sol–gel method. J. Alloys Compd. 509, 9890–9896 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (NSFC, No. 51551202), the Scientific Research Fund of Sichuan Provincial Education Department of Sichuan Province (No. 15ZA0363, 12ZA142) and the Applied Basic Research Fund of Science and Technology Department of Sichuan Province (No. 2015JY0274).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanglei Ning, Chao Wang or Daojiang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Li, Y., Li, T. et al. Fabrication, microstructures, luminescent and magnetic properties of LiFe(WO4)2 microcrystals. J Mater Sci: Mater Electron 28, 5584–5591 (2017). https://doi.org/10.1007/s10854-016-6225-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6225-3

Keywords

Navigation