Skip to main content

Advertisement

Log in

Influence of CdS dopant on oxygen vacancies and Ce3+ formation in CeO2–ZnO nanocomposites: structural, optical and catalytic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Endosulfan is the organochlorine pesticide and highly toxic to human and animal. Although its solubility is less in water but is persistent in soil. In this study, CeO2–ZnO nanocomposites have been prepared with hydrothermal method by using N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SB3-12) zwitterionic surfactant. Cadmium sulphide was doped on CeO2–ZnO nanocomposites to enhance its catalytic efficiency. The structural characterization was carried out by using different techniques like FTIR, XRD, DLS, SEM and UV–Vis spectroscopy. Lattice contraction and decrease in oxygen vacancies was observed with increase in dopant concentration, which can be attributed to the Cd2+ substitution on CeO2–ZnO nanocomposites. These alterations in nanocomposites ensues the increase in particle size along with the blue shift in band gap energy. The catalytic efficiency of nanocomposites against endosulfan increases when the oxygen vacancy concentration is higher (with decrease in dopant concentration).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.C. Yao, Y.F.Y. Yao, J. Catal. 86, 254 (1984)

    Article  Google Scholar 

  2. Jh Myung, T.H. Shin, X. Huang, G. Carins, J.T.S. Irvine, Int. J. Hydrog. Energy 40, 12003 (2015)

    Article  Google Scholar 

  3. S.L. Zhong, L.F. Zhang, L. Wang, W.X. Huang, C.M. Fan, A.W. Xu, J. Phys. Chem. C 116, 13127 (2012)

    Article  Google Scholar 

  4. Q. Fu, H. Saltsburg, M.F. Stephanopoulos, Science 301, 935 (2003)

    Article  Google Scholar 

  5. J. Kašpar, P. Fornasiero, M. Graziani, Catal. Today 50, 285 (1999)

    Article  Google Scholar 

  6. Q. Yuan, H.H. Duan, L.L. Li, L.D. Sun, Y.W. Zhang, C.H. Yan, J. Colloid Interface Sci. 335, 151 (2009)

    Article  Google Scholar 

  7. T.S. Santos, M.A. Macêdo, J. Supercond. Nov. Magn. 26, 2541 (2012)

    Article  Google Scholar 

  8. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, Appl. Nanosci. 5, 993 (2015)

    Article  Google Scholar 

  9. M. Nolan, J. Mater. Chem. 21, 9160 (2011)

    Article  Google Scholar 

  10. R. Khan, M.S. Hassan, L.W. Jang, J. Hyeon Yun, H.K. Ahn, M.S. Khil, I.H. Lee, Ceram. Int. 40, 14827 (2014)

    Article  Google Scholar 

  11. H.S. Goh, R. Adnan, M.A. Farrukh, Turk. J. Chem. 35, 375 (2011)

    Google Scholar 

  12. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Water Res. 88, 428 (2016)

    Article  Google Scholar 

  13. R. Khan, H.W. Ra, J.T. Kim, W.S. Jang, D. Sharma, Y.H. Im, Sens. Actuators B 150, 389 (2010)

    Article  Google Scholar 

  14. H.W. Ra, J.T. Kim, R. Khan, D. Sharma, Y.G. Yook, Y.B. Hahn, J.H. Park, D.G. Kim, Y.H. Im, Nano Lett. 12, 1891 (2012)

    Article  Google Scholar 

  15. M. Kamaraj, K.S. Ranjith, R. Sivaraj, R. Kumar, H.A. Salam, J. Environ. Sci. 26, 2362 (2014)

    Article  Google Scholar 

  16. C. Li, R. Chen, X. Zhang, S. Shu, J. Xiong, Y. Zheng, W. Dong, Mater. Lett. 65, 1327 (2011)

    Article  Google Scholar 

  17. D. Barpuzary, Z. Khan, N. Vinothkumar, M. De, M. Qureshi, J. Phys. Chem. C 116, 150 (2012)

    Article  Google Scholar 

  18. F. Boakye, D. Nusenu, Solid State Commun. 102, 323 (1997)

    Article  Google Scholar 

  19. D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers, J. Chem. Technol. Biotechnol. 77, 102 (2002)

    Article  Google Scholar 

  20. D.K. Jones, J.I. Hammond, R.A. Relyea, Environ. Toxicol. Chem. 28, 1939 (2009)

    Article  Google Scholar 

  21. S. Ribeiro, J.P. Sousa, A.J.A. Nogueira, A.M.V.M. Soares, Ecotoxicol. Environ. Saf. 49, 131 (2001)

    Article  Google Scholar 

  22. J. Weber, C.J. Halsall, D. Muir, C. Teixeira, J. Small, K. Solomon, M. Hermanson, H. Hung, T. Bidleman, Sci. Total Environ. 408, 2966 (2010)

    Article  Google Scholar 

  23. K. Sivagami, B. Vikraman, R.R. Krishna, T. Swaminathan, Ecotoxicol. Environ. Saf. 26, 2362 (2014)

    Google Scholar 

  24. L. Marte, R.C. Beber, M.A. Farrukh, G.A. Micke, A.C.O. Costa, N.D. Gillitt, C.A. Bunton, P. Di Profio, G. Savelli, F. Nome, J. Phys. Chem. B 111, 9762 (2007)

    Article  Google Scholar 

  25. I. Devadoss, S. Muthukumaran, Mater. Sci. Semicond. Process. 41, 282 (2016)

    Article  Google Scholar 

  26. I. Muneer, M.A. Farrukh, S. Javaid, M. Shahid, Mk Rahman, Superlattices Microstruct. 77, 256 (2015)

    Article  Google Scholar 

  27. M.E. Wankhede, S.K. Haram, Chem. Mater. 15, 1296 (2003)

    Article  Google Scholar 

  28. N. Maheswari, G. Muralidharan, Energy Fuels 29, 8246 (2015)

    Article  Google Scholar 

  29. R. Wahab, S.G. Ansari, Y.S. Kim, H.K. Seo, H.S. Shin, Appl. Surf. Sci. 253, 7622 (2007)

    Article  Google Scholar 

  30. R.C. Murdock, L. BraydichStolle, A.M. Schrand, J.J. Schlager, S.M. Hussain, Toxicol. Sci. 101, 239 (2008)

    Article  Google Scholar 

  31. F. Lin, I. Alxneit, A. Wokaun, CrystEngComm 17, 1646 (2015)

    Article  Google Scholar 

  32. B. Choudhury, A. Choudhury, Mater. Chem. Phys. 131, 666 (2012)

    Article  Google Scholar 

  33. M.A. Farrukh, M. Shahid, I. Muneer, S. Javaid, Mk Rahman, J. Mater. Sci. Mater. Electron. 27, 2994 (2015)

    Article  Google Scholar 

  34. B. Choudhury, P. Chetri, A. Choudhury, RSC Adv. 4, 4663 (2014)

    Article  Google Scholar 

  35. S.J. Hong, A.V. Virkar, J. Am. Ceram. Soc. 78, 433 (1995)

    Article  Google Scholar 

  36. X.D. Zhou, W. Huebner, Appl. Phys. Lett. 79, 3512 (2001)

    Article  Google Scholar 

  37. S. Javaid, M.A. Farrukh, I. Muneer, M. Shahid, Mk Rahman, A.A. Umar, Superlattices Microstruct. 82, 234 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Government College University Lahore through Office of Research Innovation and Commercialization (ORIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akhyar Farrukh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imtiaz, A., Farrukh, M.A. Influence of CdS dopant on oxygen vacancies and Ce3+ formation in CeO2–ZnO nanocomposites: structural, optical and catalytic properties. J Mater Sci: Mater Electron 28, 2788–2794 (2017). https://doi.org/10.1007/s10854-016-5859-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5859-5

Keywords

Navigation