Skip to main content

Advertisement

Log in

Bi2MoO6/RGO composite nanofibers: facile electrospinning fabrication, structure, and significantly improved photocatalytic water splitting activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi2MoO6/reduced graphene oxide (RGO) composite nanofibers were successfully fabricated by calcining the electrospun polyvinyl pyrrolidone (PVP)/RGO/[(NH4)6Mo7O24 + Bi(NO3)3] composite nanofibers. The products were investigated in detail by X-ray diffractometer, scanning electron microscope, transmission electron microscope, UV–Vis diffuse reflectance spectroscope and X-ray photoelectron spectroscope. The as-prepared Bi2MoO6/RGO composite nanofibers are pure orthorhombic phase with space group of Pbca, and the diameter is 132 ± 18 nm. These nanocomposite samples display high photocatalytic hydrogen production activity in aqueous solutions containing methanol as sacrificial reagent under visible light irradiation. Bi2MoO6/5 % RGO composite nanofibers used as photocatalyst for water splitting exhibit the highest H2 evolution rate of 794.72 μmol h−1, which is improved by 2.86 times compared to Bi2MoO6 nanofibers. The enhancement of photocatalytic hydrogen production performance is due to addition of RGO, the intimate interfacial contact and large contact area between Bi2MoO6 nanoparticles and RGO sheets, which help to make full use of the electron conductivity of RGO for transferring the photogenerated electrons and separating the photoproduced carriers. Therefore the electrospinning is a facile and effective technique to fabricate Bi2MoO6/RGO composite nanofibers which could take advantage of solar energy to achieve efficient H2-evolution from water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Sung, J. Lim, J.H. Koh, L.J. Hill, B.K. Min, J. Pyun, K. Char, Uniform decoration of Pt nanoparticles on well-defined CdSe tetrapods and the effect of their Pt cluster size on photocatalytic H2 generation. CrystEngComm 17, 8423–8427 (2015)

    Article  Google Scholar 

  2. T. Grewe, H. Tüysüz, Alkali metals incorporated ordered mesoporous tantalum oxide with enhanced photocatalytic activity for water splitting. J. Mater. Chem. A 4, 3007–3017 (2016)

    Article  Google Scholar 

  3. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  Google Scholar 

  4. X.F. Zhou, Q.Z. Gao, X. Li, Y.J. Liu, S.S. Zhang, Y.P. Fang, J. Li, Ultra-thin SiC layers covered graphene nanosheets as dvanced photocatalysts for hydrogen evolution. J. Mater. Chem. A 3, 10999–11005 (2015)

    Article  Google Scholar 

  5. M.Y. Wang, J. Ioccozia, L. Sun, C.J. Lin, Z.Q. Lin, Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. Energy Environ. Sci. 7, 2182–2202 (2014)

    Article  Google Scholar 

  6. Y.H. Zhang, Y.J. Xu, Bi2WO6: a highly chemoselective visible light photocatalyst toward aerobic oxidation of benzylic alcohols in water. RSC Adv. 4, 2904–2910 (2014)

    Article  Google Scholar 

  7. D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X.W. Chen, Z.X. Guo, J.W. Tang, Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Ed. 53, 9240–9245 (2014)

    Article  Google Scholar 

  8. S.J. Hu, B. Chi, J. Pu, L. Jian, Surface charge modification in improvement of photocatalytic H2 production over La2Ti2O7/graphene nanocomposite. RSC Adv. 4, 60437–60444 (2014)

    Article  Google Scholar 

  9. F.K. Ma, G. Zhao, C. Li, T.L. Wang, Y.Z. Wu, J.X. Lv, Y.Y. Zhong, X.P. Hao, Fabrication of CdS/BNNSs nanocomposites with broadband solar absorption for efficient photocatalytic hydrogen evolution. CrystEngComm 18, 631–637 (2016)

    Article  Google Scholar 

  10. M.Y. Zhang, C.L. Shao, J.B. Mu, X.M. Huang, Z.Y. Zhang, Z.C. Guo, P. Zhang, Y.C. Liu, Hierarchical heterostructures of Bi2MoO6 on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties. J. Mater. Chem. 22, 577–584 (2012)

    Article  Google Scholar 

  11. X. Wang, Fei Gu, L. Li, G. L. Fang, X. Wang. A facile mixed-solvothermal route to γ-Bi2MoO6 nanoflakes and their visible-light-responsive photocatalytic activity. Mater. Res. Bull. 48, 3761–3765 (2013)

    Article  Google Scholar 

  12. C. Belver, C. Adan, M.F. Garcia, Photocatalytic behaviour of Bi2MoO6 polymetalates for rhodamine B degradation. Catal. Today 143, 274–281 (2009)

    Article  Google Scholar 

  13. M.Y. Zhang, C.L. Shao, J.B. Mu, Z.Y. Zhang, Z.C. Guo, P. Zhang, Y.C. Liu, One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. CrystEngComm 14, 605–612 (2012)

    Article  Google Scholar 

  14. Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J. Phys. Chem. B 110, 17790–17797 (2006)

    Article  Google Scholar 

  15. Y.C. Miao, G.F. Pan, Y.N. Huo, H.X. Li, Aerosol-spraying preparation of Bi2MoO6: a visible photocatalyst in hollow microspheres with a porous outer shell and enhanced activity. Dyes Pigm. 99, 382–389 (2013)

    Article  Google Scholar 

  16. M.Y. Zhang, C.L. Shao, P. Zhang, C.Y. Su, X. Zhang, P.P. Liang, Y.Y. Sun, Y.H. Liu, Bi2MoO6 microtubes: controlled fabrication by using electrospun polyacrylonitrile microfibers as template and their enhanced visible light photocatalytic activity. J. Hazard. Mater. 225–226, 155–163 (2012)

    Article  Google Scholar 

  17. Y.S. Xu, W.D. Zhang, Monodispersed Ag3PO4 nanocrystals loaded on the surface of spherical Bi2MoO6 with enhanced photocatalytic performance. Dalton Trans. 42, 1094–1101 (2013)

    Article  Google Scholar 

  18. M. Shang, W.Z. Wang, J. Ren, S.M. Sun, L. Zhang, Nanoscale Kirkendall effect for the synthesis of Bi2MoO6 boxes via a facile solution-phase method. Nanoscale 3, 1474–1476 (2011)

    Article  Google Scholar 

  19. A. Martínez-de la Cruz, S. Obregón, Alfaro. Synthesis and characterization of γ-Bi2MoO6 prepared by co-precipitation: photoassisted degradation of organic dyes under vis-irradiation. J. Mol. Catal. A Chem. 320, 85–91 (2010)

    Article  Google Scholar 

  20. F. Zhou, R. Shi, Y.F. Zhu, Significant enhancement of the visible photocatalytic degradation performances of γ-Bi2MoO6 nanoplate by graphene hybridization. J. Mol. Catal. A Chem. 340, 77–82 (2011)

    Article  Google Scholar 

  21. H.P. Li, Q.H. Deng, J.Y. Liu, W.G. Hou, N. Du, R.J. Zhang, X.T. Tao, Synthesis, characterization and enhanced visible light photocatalytic activity of Bi2MoO6/Zn–Al layered double hydroxide hierarchical heterostructures. Catal. Sci. Technol. 4, 1028–1037 (2014)

    Article  Google Scholar 

  22. J. Di, J.X. Xia, M.X. Ji, H.P. Li, H. Xu, H.M. Li, R. Chen, The synergistic role of carbon quantum dots for the improved photocatalytic performances of Bi2MoO6. Nanoscale 7, 11433–11443 (2015)

    Article  Google Scholar 

  23. D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39, 3157–3180 (2010)

    Article  Google Scholar 

  24. Q. Xiang, J.G. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782–796 (2012)

    Article  Google Scholar 

  25. Y. Zhang, Y.K. Zhu, J.Q. Yu, D.J. Yang, T.W. Ng, P.K. Wong, J.C. Yu, Enhanced photocatalytic water disinfection properties of Bi2MoO6–RGO nanocomposites under visible light irradiation. Nanoscale 5, 6307–6310 (2013)

    Article  Google Scholar 

  26. P.F. Wang, Y.H. Ao, C. Wang, J. Hou, J. Qian, A one-pot method for the preparation of graphene-Bi2MoO6 hybrid photocatalysts that are responsive to visible-light and have excellent photocatalytic activity in the degradation of organic pollutants. Carbon 50, 5256–5264 (2012)

    Article  Google Scholar 

  27. X.J. Zhou, Q.L. Ma, W.S. Yu, T.T. Wang, X.T. Dong, J.X. Wang, G.X. Liu, Magnetism and white-light-emission bifunctionality simultaneously assembled into flexible janus nanofiber via electrospinning. J. Mater. Sci. 50, 7884–7895 (2015)

    Article  Google Scholar 

  28. K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, Color-tunable luminescence nanofibers endowed with simultaneously tuned electricity–magnetism performance. J. Mater. Sci.: Mater. Electron. 26, 5994–6003 (2015)

    Google Scholar 

  29. L. Han, M.M. Pan, Y. Lv, Y.T. Gu, X.F. Wang, D. Li, Q.L. Kong, X.T. Dong, Fabrication of Y2O2S:Eu3+ hollow nanofibers by sulfurization of Y2O3:Eu3+ hollow nanofibers. J. Mater. Sci.: Mater. Electron. 26, 677–684 (2015)

    Google Scholar 

  30. J. Tian, Q.L. Ma, X.T. Dong, M. Yang, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, Flexible composite nanobelts: facile electrospinning construction, structure and color-tunable photoluminescence. J. Mater. Sci.: Mater. Electron. 26, 8413–8420 (2015)

    Google Scholar 

  31. K.S. Divya, T.U. Umadevi, S. Mathew, Graphene-based semiconductor nanocomposites for photocatalytic applications. J. Nanosci. Lett. 4, 21 (2014)

    Google Scholar 

  32. C. Hou, Q. Zhang, M. Zhu, Y. Li, H. Wang, One-step synthesis of magnetically-functionalized reduced graphite sheets and their use in hydrogels. Carbon 49, 47–53 (2011)

    Article  Google Scholar 

  33. Y. Ma, Y.L. Jia, Z.B. Jiao, M. Yang, Y.X. Qi, Y.P. Bi, Hierarchical Bi2MoO6 nanosheet-built frameworks with excellent photocatalytic properties. Chem. Commun. 51, 6655–6658 (2015)

    Article  Google Scholar 

  34. C.Y. He, R.H. Wang, H.G. Fu, P.K. Shen, Nitrogen-self-doped graphene as a high capacity anode material for lithium-ion batteries. J. Mater. Chem. A 1, 14586–14591 (2013)

    Article  Google Scholar 

  35. W. Geng, X.F. Zhao, W.Y. Zan, H.X. Liu, X.J. Yao, Effects of the electric field on the properties of ZnO–graphene composites: a density functional theory study. Phys. Chem. Chem. Phys. 16, 3542–3548 (2014)

    Article  Google Scholar 

  36. Z. Zhang, C. Shao, X. Li, Y. Sun, M. Zhang, J. Mu, P. Zhang, Z. Guo, Y. Liu, Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale 5, 606–618 (2013)

    Article  Google Scholar 

  37. C.H. Wang, C.L. Shao, Y.C. Liu, X.H. Li, Water-dichloromethane interface controlled synthesis of hierarchical rutile TiO2 superstructures and their photocatalytic properties. Inorg. Chem. 48, 1105–1113 (2009)

    Article  Google Scholar 

  38. R.P. Panmand, Y.A. Sethi, S.R. Kadam, M.S. Tamboli, L.K. Nikam, J.D. Ambekar, C.-J. Park, B.B. Kale, Self-assembled hierarchical nanostructures of Bi2WO6 for hydrogen production and dye degradation under solar light. CrystEngComm 17, 107–115 (2015)

    Article  Google Scholar 

  39. S.J. Hu, B. Chi, J. Pu, L. Jian, Surface charge modification for improvement of photocatalytic H2 production over a La2Ti2O7/graphene nanocomposite. RSC Adv. 4, 60437–60444 (2014)

    Article  Google Scholar 

  40. M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D.K. Maude, A.L. Barra, M. Sprinkle, C. Berger, W.A. de Heer, M. Potemski, Approaching the dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 101, 267601 (2008)

    Article  Google Scholar 

  41. J. Yang, X.H. Wang, X.L. Zhao, J. Dai, S.R. Mo, Synthesis of uniform Bi2WO6-reduced graphene oxide nanocomposites with significantly enhanced photocatalytic reduction activity. J. Phys. Chem. C 119, 3068–3078 (2015)

    Article  Google Scholar 

  42. X. Lin, X.Y. Guo, Q.W. Wang, L.M. Chang, H.J. Zhai, Hydrothermal synthesis and efficient visible light photocatalytic activity of Bi2MoO6/BiVO4 heterojunction. Acta Phys. Chim. Sin. 30, 2113–2120 (2014)

    Google Scholar 

  43. J.G. Yu, W.G. Wang, B. Cheng, B.L. Su, Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment. J. Phys. Chem. C 113, 6743–6750 (2009)

    Article  Google Scholar 

  44. H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2010)

    Article  Google Scholar 

  45. K.F. Zhou, Y.H. Zhu, X.L. Yang, X. Jiang, C.Z. Li, Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J. Chem. 35, 353–359 (2011)

    Article  Google Scholar 

  46. J.G. Yu, J.R. Ran, Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2. Energy Environ. Sci. 4, 1364–1371 (2011)

    Article  Google Scholar 

  47. E.P. Gao, W.Z. Wang, M. Shang, J.H. Xu, Synthesis and enhanced photocatalytic performance of graphene–Bi2WO6 composite. Phys. Chem. Chem. Phys. 13, 2887–2893 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51573023, 50972020, 51072026), Ph.D. Programs Foundation of the Ministry of Education of China (20102216110002, 20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20130101001JC, 20070402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wensheng Yu or Xiangting Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yang, Y., Yu, W. et al. Bi2MoO6/RGO composite nanofibers: facile electrospinning fabrication, structure, and significantly improved photocatalytic water splitting activity. J Mater Sci: Mater Electron 28, 543–552 (2017). https://doi.org/10.1007/s10854-016-5557-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5557-3

Keywords

Navigation