Skip to main content
Log in

Electrical percolation threshold in Ag–DLC nanocomposite films prepared by RF-sputtering and RF-PECVD in acetylene plasma

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver–diamond like carbon (Ag–DLC) nanocomposite films were deposited on glass and silicon substrates by co-deposition of RF-sputtering and RF-PECVD method in acetylene plasma. The effects of deposition time on creation of conductive percolation pathway in Ag–DLC nanocomposite films were investigated. The films were characterized by XRD pattern, AFM images, UV–Vis and FTIR spectra. Pressure of chamber’s variation over time was illustrated the rate of carbon and silver deposition changing. The results showed that nanoparticles’ size and surface roughness was increased by increasing deposition time. Surface plasmon resonance peak’s red shift in optical absorption spectra of samples could be depends on silver nanoparticles’ scale up. Based on electrical measurements, electrical percolation threshold was observed only in the film with 35 min deposition time. Pathway was created for electric current by Ag nanoparticles’ moving in carbon matrix due to sp3 bonds and silver content in the films. The aging effect was studied for sample #2 in the threshold of percolation, where obtained Ag nanoparticles memorize its previous pathway. This investigation provides a better understanding for electric properties of Ag–DLC nanocomposite based on the percolation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Nakahigashi, Y. Tanaka, K. Miyake, H. Oohara, Properties of flexible DLC film deposited by amplitude-modulated RF P-CVD. Tribol. Int. 37, 907–912 (2014)

    Article  Google Scholar 

  2. M.C. Salvadoria, D.R. Martinsb, M. Cattania, DLC coating roughness as a function of film thickness. Surf. Coat. Technol. 200, 5119–5122 (2006)

    Article  Google Scholar 

  3. V.G. Litovchenko, N.I. Klyui, Solar cells based on DLC film–Si structures for space application. Sol. Energy Mater. Sol. Cells 68, 55–70 (2001)

    Article  Google Scholar 

  4. J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 37, 129–281 (2002)

    Article  Google Scholar 

  5. J. Robertson, Comparison of diamond-like carbon to diamond for applications. Phys. Status Solidi A 205, 2233–2244 (2008)

    Article  Google Scholar 

  6. A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. A 362, 2477 (2004)

    Article  Google Scholar 

  7. J.Y. Jao, Sh Han, LSh Chang, ChL Chang, YCh. Liu, H.C. Shih, Bias voltage effect on the structure and property of chromium copper–diamond-like carbon multilayer films fabricated by cathodic arc plasma. Appl. Surf. Sci. 256, 7490–7495 (2010)

    Article  Google Scholar 

  8. L. Huang, H. Jiang, J. Zhang, Zh Zhang, P. Zhang, Synthesis of copper nanoparticles containing diamond-like carbon films by electrochemical method. Electrochem. Commun. 8, 262–266 (2006)

    Article  Google Scholar 

  9. W.Y. Wu, J.M. Ting, Growth and characteristics of metal-containing diamond-like carbon using a self-assembled process. Carbon 44, 1210–1217 (2006)

    Article  Google Scholar 

  10. G. Zhang, P. Yan, P. Wang, Y. Chen, J. Zhang, L. Wang, J. Zhang, The effect of applied substrate negative bias voltage on the structure and properties of Al-containing aC: H thin films. Surf. Coat. Technol. 202, 2684–2698 (2008)

    Article  Google Scholar 

  11. W.J. Hsieh, P.S. Shih, C.C. Lin, C.Y. Wang, H.C. Shih, Structure and optical property of the aC: N films synthesized by filtered cathode vacuum arc. Surf. Coat. Technol. 200, 3175–3178 (2006)

    Article  Google Scholar 

  12. N.K. Manninena, R.E. Galindob, S. Carvalhoa, A. Cavaleiroa, Silver surface segregation in Ag–DLC nanocomposite coatings. Surf. Coat. Technol. 267, 90–97 (2015)

    Article  Google Scholar 

  13. D. Batory, J. Gorzedowski, B. Rajchel, W. Szymanski, L. Kolodziejczyk, Silver implanted diamond-like carbon coatings. Vacuum 110, 78–86 (2014)

    Article  Google Scholar 

  14. Š. Meškinis, A. Čiegis, A. Vasiliauskas, K. Šlapikas, T. Tamulevičius, A. Tamulevičienė, S. Tamulevičius, Optical properties of diamond like carbon films containing copper, grown by high power pulsed magnetron sputtering and direct current magnetron sputtering: structure and composition effects. Thin Solid Films 581, 48–53 (2015)

    Article  Google Scholar 

  15. N. Dwivedi, S. Kumar, H.K. Malik, C. Sreekumar, S. Dayal, C.M.S. Rauthan, O.S. Panwar, Investigation of properties of Cu containing DLC films produced by PECVD process. J. Phys. Chem. Solids 73, 308 (2012)

    Article  Google Scholar 

  16. T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, A. Baradaran, A. Karimi, Z. Mobini, Co-deposition process of RF-sputtering and RF-PECVD of copper/carbon nanocomposite films. Surf. Coat. Technol. 202, 2731–2736 (2008)

    Article  Google Scholar 

  17. A. Escudeiro, T. Polcar, A. Cavaleiro, a-C(:H) and a-C(:H)_Zr coatings deposited on biomedical Ti-based substrates: Tribological properties. Thin Solid Films 538, 89–96 (2013)

    Article  Google Scholar 

  18. Š. Meškinis, A. Vasiliauskas, K. Šlapikas, R. Gudaitis, M. Andrulevičius, A. Čiegis, G. Niaura, R. Kondrotas, S. Tamulevičius, Bias effects on structure and piezoresistive properties of DLC: Ag thin films. Surf. Coat. Technol. 255, 84–89 (2014)

    Article  Google Scholar 

  19. N.K. Manninen, F. Ribeiro, A. Escudeiro, T. Polcar, S. Carvalho, A. Cavaleiro, Influence of Ag content on mechanical and tribological behavior of DLC coatings. Surf. Coat. Technol. 232, 440–446 (2013)

    Article  Google Scholar 

  20. D. Bociaga, P. Komorowski, D. Batorya, W. Szymanski, A. Olejnika, K. Jastrzebski, W. Jakubowski, Silver-doped nanocomposite carbon coatings (Ag–DLC) for biomedical applications physiochemical and biological evaluation. Appl. Surf. Sci. 355, 388–397 (2015)

    Article  Google Scholar 

  21. DYu. Godovski, Thermal and electrical conductivity of polymer materials, chapter: thermal and electrical conductivity of polymer materials volume 119 of book (Springer). Polym. Mater. Sci. Eng. 72(283), 79–122 (1995)

    Google Scholar 

  22. Y. Liu, P. Gao, X. Jiang, K. Bi, H.X.W. Peng, Percolation network in resistive switching devices with the structure of silver/amorphous silicon/p-type silicon. Appl. Phys. Lett. 104, 043502 (2014)

    Article  Google Scholar 

  23. M. Molamohammadi, A. Arman, A. Achour, B. Astinchap, A. Ahmadpourian, A. Boochani, S. Naderi, A. Ahmadpourian, Microstructure and optical properties of cobalt–carbon nanocomposites prepared by RF-sputtering. J. Mater. Sci. Mater. Electron. 26, 5964–5969 (2015)

    Article  Google Scholar 

  24. Y. Wua, J. Chena, H. Li, L. Ji, Y. Yea, H. Zhoua, Preparation and properties of Ag/DLC nanocomposite films fabricated by unbalanced magnetron sputtering. Appl. Surf. Sci. 284, 165–170 (2013)

    Article  Google Scholar 

  25. G.X. Yong, F.H. Liang, M.J. Min, ZhZ Yuan, L.J. Xiao, ChY Sheng, YSh Ea, G.J. Hua, Analysis of the dielectric constants of the Ag2O film by spectroscopic ellipsometry and single-oscillator model. Phys. B 405, 1922–1926 (2010)

    Article  Google Scholar 

  26. R. Paul, R.N. Gayen, S. Hussain, V. Khanna, R. Bhar, A.K. Pal, Synthesis and characterization of composite films of silver nanoparticles embedded in DLC matrix prepared by plasma CVD technique. Eur. Phys. J. Appl. Phys. 47, 10502 (2009). doi:10.1051/epjap/2009086

    Article  Google Scholar 

  27. K. Lance, E. Kelly, L.L. Coronado, G.C. Zhao, Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)

    Google Scholar 

  28. M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, Ph Tuchscherer, D.V. Voronine, Coherent two-dimensional nanoscopy. Science 333, 1723–1726 (2011)

    Article  Google Scholar 

  29. A.I. Maaroof, D.S. Sutherland, Optimum plasmon hybridization at percolation threshold of silver films near metallic surfaces. J. Phys. D Appl. Phys. 43, 405301 (2010)

    Article  Google Scholar 

  30. M.I. Stockman, S.V. Faleev, D.J. Bergman, Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics? Phys. Rev. Lett. 87, 167401 (2001)

    Article  Google Scholar 

  31. D.A. Genov, V.M. Shalaev, A.K. Sarychev, Surface plasmon excitation and correlation-induced localization–delocalization transition in semicontinuous metal films. Phys. Rev. B 72, 113102 (2005)

    Article  Google Scholar 

  32. K. Seal, A.K. Sarychev, H. Noh, D.A. Genov, A. Yamilov, V.M. Shalaev, Z.C. Ying, H. Cao, Near-field intensity correlations in semicontinuous metal-dielectric films. Phys. Rev. Lett. 94, 226101 (2005)

    Article  Google Scholar 

  33. K. Seal, D.A. Genov, A.K. Sarychev, H. Noh, V.M. Shalaev, Z.C. Ying, X. Zhang, H. Cao, Coexistence of localized and delocalized surface plasmon modes in percolating metal films. Phys. Rev. Lett. 97, 206103 (2006)

    Article  Google Scholar 

  34. V. Krachmalnicoff, E. Castanie, Y. De Wilde, Fluctuations of the local density of states probe localized surface plasmons on disordered metal films. Phys. Rev. Lett. 105, 183901 (2010)

    Article  Google Scholar 

  35. N.J. Borys, E. Shafran, J.M. Lupton, Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots. Sci. Rep. 3, 2090 (2013). doi:10.1038/srep02090

    Article  Google Scholar 

  36. A.E. Shilov, G.B. Shul’pin, Activation of CH bonds by metal complexes. Chem. Rev. 97(8), 2879–2932 (1997)

    Article  Google Scholar 

  37. M. Brookhart, M.L.H. Greend, L.L. Wong, Carbon–Hydrogen-Transition Metal Bonds (Wiley, New York, 1988). doi:10.1002/9780470166376.ch1

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bandar Astinchap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolghaderi, S., Astinchap, B. & Shafiekhani, A. Electrical percolation threshold in Ag–DLC nanocomposite films prepared by RF-sputtering and RF-PECVD in acetylene plasma. J Mater Sci: Mater Electron 27, 6713–6720 (2016). https://doi.org/10.1007/s10854-016-4620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4620-4

Keywords

Navigation