Skip to main content
Log in

IVT measurements of GaN power Schottky diodes with drift layers grown by HVPE on HVPE GaN substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To date, a majority of epitaxial layers for vertical gallium nitride (GaN) power Schottky diodes have been grown by metalorganic chemical vapor deposition. In this work, we investigate the electrical properties of vertical GaN Schottky diodes with drift layers grown by hydride vapor phase epitaxy (HVPE) on moderately-doped freestanding HVPE GaN substrates. Room temperature IV data is presented for devices tested where results for diode characteristics such as the breakdown voltage, Vb, specific on-resistance, Ron-sp, ideality factor, n, and barrier height, Φb, are measured for devices across the 1 cm × 1 cm sample. The smallest diodes, which are 30 μm in diameter, show the smallest specific on-resistance, whereas the breakdown voltage (defined as the voltage corresponding to a current of 10 mA cm−2) is independent of device size across the wafer. IV data show an average value of 1.06 ± 0.06 for n and 0.80 ± 0.04 eV for Φb with little variation across the wafer, suggesting a reasonable metal–semiconductor interface across the entire sample. For one of the 300 μm devices tested, we also examine the IV properties as function of temperature from 25 to 250 °C in increments of 25 °C and extract a zero temperature Φb of 0.908 eV and Richardson’s constant of 4.44 A cm−2 K−2 which is significantly less than the theoretical value of 26.9 A cm−2 K−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.J. Baliga, Fundamentals of Power Semiconductor Devices (Springer, New York, 2008), p. 15

    Book  Google Scholar 

  2. R.P. Tompkins, T.A. Walsh, M.A. Derenge, K.W. Kirchner, C.B. Nguyen, K.A. Jones, P. Suvarna, M. Tungare, N. Tripahi, F. Shahedipour-Sandvik, J. Mater. Res. 26(23), 2895 (2011)

    Article  Google Scholar 

  3. Y. Saitoh, K. Sumiyoshi, M. Okada, T. Horii, T. Miyazaki, H. Shiomi, M. Ueno, K. Katayama, M. Kiyama, T. Nakamura, Appl. Phys. Exp. 3, 081001 (2010)

    Article  Google Scholar 

  4. I.C. Kizilyalli, A.P. Edwards, H. Nie, D. Disney, D. Bour, IEEE Trans. Electron Devices 60, 3067 (2013)

    Article  Google Scholar 

  5. K. Fujito, S. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, S. Nagao, J. Cryst. Growth 311, 3011 (2009)

    Article  Google Scholar 

  6. S.K. Mathis, A.E. Romanov, L.F. Chen, G.E. Beltz, W. Pompe, J.S. Speck, Phys. Status Solidi A 179, 125–145 (2000)

    Article  Google Scholar 

  7. M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, T. Muka, J. Appl. Phys. 45, L659 (2006)

    Article  Google Scholar 

  8. R.P. Tompkins, T.A. Walsh, M.A. Derenge, K.W. Kirchner, S. Zhou, C.B. Nguyen, K.A. Jones, G. Mulholland, R. Metzger, J.H. Leach, P. Suvarna, M. Tungare, F. Shahedipour-Sandvik, Solid State Electron. 79, 238 (2013)

    Article  Google Scholar 

  9. G.S. Sudhir, Y. Peyrot, J. Krüger, Y. Kim, R. Klockenbrink, C. Kiesielowski, M.D. Rubin, E.R. Weber, W. Kriegseis, B.K. Meyer, Mater. Res. Soc. Symp. Proc. 482, 525 (1998)

    Article  Google Scholar 

  10. A. Cremades, L. Görgens, O. Ambacher, M. Stutzmann, F. Scholz, Phys. Rev. B 61, 2812 (2000)

    Article  Google Scholar 

  11. L.T. Romano, C.G. Van de Walle, J.W. Ager III, W. Götz, R.S. Kern, J. Appl. Phys. 87, 7745 (2000)

    Article  Google Scholar 

  12. J.D. Wiley, G.L. Miller, IEEE Trans. Electron Devices 22, 265 (1975)

    Article  Google Scholar 

  13. Y. Wang, S. Alur, Y. Sharma, F. Tong, R. Thapa, P. Gartland, T. Issacs-Smith, C. Ahyi, J. Williams, M. Park, M. Johnson, T. Paskova, E. Preble, K. Evans, Semicond. Sci. Technol. 26, 022002 (2011)

    Article  Google Scholar 

  14. Y. Wang, H. Xu, S. Alur, Y. Sharma, F. Tong, P. Gartland, T. Issacs-Smith, C. Ahyi, J. Williams, M. Park, G. Wheeler, M. Johnson, A. Allerman, A. Hanser, T. Paskova, E.A. Preble, K. Evans, Phys. Status Solidi C 8, 2430 (2011)

    Article  Google Scholar 

  15. Y. Zhou, D. Wang, C. Ahyi, C. Tin, J. Williams, M. Park, N. Williams, A. Hanser, Solid State Electon. 50, 1744 (2006)

    Article  Google Scholar 

  16. B.J. Zhang, T. Egawa, G.Y. Zhao, H. Ishikawa, M. Umeno, T. Jimbo, Appl. Phys. Lett. 79, 2567 (2001)

    Article  Google Scholar 

  17. R.P. Tompkins, J.R. Smith, K.W. Kirchner, K.A. Jones, J.H. Leach, K. Udwary, E. Preble, P. Suvarna, J.M. Leathersich, F. Shahedipour-Sandvik, J. Electron. Mater. 43, 850 (2014)

    Article  Google Scholar 

  18. J.W. Johnson, F.R. LaRoch, F. Ren, B.P. Gila, M.E. Overberg, C.R. Abernathy, J.I. Chyi, C.C. Chuo, T.E. Nee, C.M. Lee, K.P. Lee, S.S. Park, Y.J. Park, S.J. Pearton, Solid State Electron. 45, 405 (2001)

    Article  Google Scholar 

  19. J.W. Johnson, A.P. Zhang, W.B. Luo, F. Ren, S.J. Pearton, S.S. Park et al., IEEE Trans. Electron Devices 49, 504 (2002)

    Article  Google Scholar 

  20. K. Suzue, S.N. Mohammad, Z.F. Fan, W. Kim, O. Aktas, A.E. Botchkarev, H. Morkoc, J. Appl. Phys. 80(8), 4467 (1996)

    Article  Google Scholar 

  21. A.M. Witowski, K. Pakula, J.M. Baranowski, M.L. Sadowski, P. Wyder, Appl. Phys. Lett. 75, 4154 (1999)

    Article  Google Scholar 

  22. Z. Xiaoling, L. Fei, L. Changzhi, X. Xuesong, L. Ying, S.N. Mohammad, J. Semicond. 30, 034001 (2009)

    Article  Google Scholar 

  23. http://www.semetrol.com/

  24. A.M. Witowski, K. Pakula, J.M. Baranowski, M.L. Sadowski, P. Wyder, Appl. Phys. Lett. 75, 4145 (1999)

    Article  Google Scholar 

  25. J.D. Guo, F.M. Pan, M.S. Feng, R.J. Guo, P.F. Chou, C.Y. Chang, J. Appl. Phys. 80, 1623 (1996)

    Article  Google Scholar 

  26. L.S. Yu, Q.Z. Liu, J. Xing, D.J. Qiao, S.S. Lau, J. Redwing, J. Appl. Phys. 84, 2099 (1998)

    Article  Google Scholar 

  27. P. Hacke, T. Detchprohm, K. Hiramatsu, N. Sawaki, Appl. Phys. Lett. 63, 2676 (1993)

    Article  Google Scholar 

  28. S. Dogan, S. Duman, B. Gurbulak, S. Tuzemen, H. Morkoc, Phys. E 41, 646 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Tompkins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tompkins, R.P., Khan, M.R., Green, R. et al. IVT measurements of GaN power Schottky diodes with drift layers grown by HVPE on HVPE GaN substrates. J Mater Sci: Mater Electron 27, 6108–6114 (2016). https://doi.org/10.1007/s10854-016-4536-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4536-z

Keywords

Navigation