Skip to main content
Log in

Fabrication and characterization of Magneli phase Ti4O7 submicron rods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ti4O7 submicron rods were successfully fabricated by heat-treating H2Ti3O7 nanowires doped with nano-sized carbon black. This novel method combines the technical superiority of hydrothermal method and carbothermal reduction. In order to investigate reaction process and the influence of the addition of carbon black and reaction temperature on the reduction process, we synthesized substoichiometric titanium oxides in different conditions. The results showed that Ti4O7 submicron rods could be prepared with carbon black content of 3.7 % wt% by heating at 1075 °C for 3 h. The Ti4O7 samples with higher specific surface area showed outstanding conductivity and optical properties. The UV–Vis spectra of Ti4O7 submicron rods showed that the absorption band covered the visible region and part of the near-infrared region. The light absorption property of Ti4O7 submicron rods is quite different with that of TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Andersson, B. Collen, U. Kuylenstierna, A. Magneli, Acta Chem. Scand. 11, 1641 (1957)

    Article  Google Scholar 

  2. S. Andersson, B. Collen, G. Kruuse, U. Kuylenstierna, A. Magneli, H. Pestmalis, S. Asbrink, Acta Chem. Scand. 11, 1653 (1957)

    Article  Google Scholar 

  3. D.C. Lynch, D.E. Bullard, Metall. Mater. Trans. B 28, 447 (1997)

    Article  Google Scholar 

  4. J.R. Smith, F.C. Walsh, R.L. Clarke, J. Appl. Electrochem. 28, 1021 (1998)

    Article  Google Scholar 

  5. L.A. Bursill, B.G. Hyde, Prog. Solid State Chem. 7, 177 (1972)

    Article  Google Scholar 

  6. L. Leandro, M. Giuseppe, Phys. Rev. B 79, 245133 (2009)

    Article  Google Scholar 

  7. S. Andersson, A. Magneli, Naturwissenschaften 43, 495 (1956)

    Article  Google Scholar 

  8. M. Toyoda, T. Yano, B. Tryba, S. Mozia, T. Tsumura, M. Inagaki, Appl. Catal. B Environ. 88, 160 (2009)

    Article  Google Scholar 

  9. H. Harada, T. Ueda, Chem. Phys. Lett. 106, 229 (1984)

    Article  Google Scholar 

  10. M.A.R. Dewan, G.Q. Zhang, O. Ostrovski, Metall. Mater. Trans. B 40, 62 (2009)

    Article  Google Scholar 

  11. Y. Lu, Y. Matsuda, K. Sagara, L. Hao, T. Otomitsu, H. Yoshida, Adv. Mater. Res. 415–417, 1291 (2012)

    Google Scholar 

  12. C. Tang, D.B. Zhou, Q. Zhang, Mater. Lett. 79, 42 (2012)

    Article  Google Scholar 

  13. R.J. Zhu, Y. Liu, J.W. Ye, X.Y. Zhang, J. Mater. Sci. Mater. Electron. 24, 4853 (2013)

    Article  Google Scholar 

  14. F.C. Walsh, R.G.A. Wills, Electrochem. Acta 55, 6342 (2010)

    Article  Google Scholar 

  15. T. Ioroi, H. Senoh, S. Yamazaki, Z. Siroma, N. Fujiwara, K. Yasuda, J. Electrochem. Soc. 155, B321 (2008)

    Article  Google Scholar 

  16. Z.G. Luo, S.B. Sang, Q.M. Wu, S.Y. Liu, ECS Electrochem. Lett. 2, A21 (2013)

    Article  Google Scholar 

  17. K. Ellis, A. Hill, J. Hill, A. Loyns, T. Partington, J. Power Sources 136, 366 (2004)

    Article  Google Scholar 

  18. M. Dai, F. Xu, Y.N. Lu, Y.F. Liu, Y. Xie, Appl. Surf. Sci. 257, 3586 (2011)

    Article  Google Scholar 

  19. B. Liu, L.H. Zhang, H. Zhao, Y. Chen, H.Q. Yang, Sens. Actuators B 173, 643 (2012)

    Article  Google Scholar 

  20. M.R. Karim, J.H. Yeum, M.S. Lee, K.T. Lim, React. Funct. Polym. 68, 1371 (2008)

    Article  Google Scholar 

  21. W.Q. Han, Y. Zhang, Appl. Phys. Lett. 92, 203117 (2008)

    Article  Google Scholar 

  22. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 11, 1307 (1999)

    Article  Google Scholar 

  23. Q. Chen, W. Zhou, G.H. Du, L.M. Peng, Adv. Mater. 14, 1208 (2002)

    Article  Google Scholar 

  24. CSIRO Report DMR-098, Evaluation of the effect of Ebonex additive on lead-acid battery capacity at different discharge rates, Aug 1995

  25. L.M. Vracar, N.V. Krstajic, V.R. Radmilovic, M.M. Jaksic, J. Electroana. Chem. 587, 99 (2006)

    Article  Google Scholar 

  26. W.J. Macklin, R.J. Neat, Solid State Ionics 53–56, 694 (1992)

    Article  Google Scholar 

  27. R. Kun, S. Tarjan, A. Oszko, T. Seemann, V. Zollmer, M. Bussed et al., J. Solid State Chem. 182, 3076 (2009)

    Article  Google Scholar 

  28. S.N. Subbarao, Y.H. Yun, R. Kershaw, K. Dwinghta, A. Wold, Inorg. Chem. 18, 488 (1979)

    Article  Google Scholar 

  29. M. Radecka, A. Trenczek-Zajac, K. Zakrzewska, M. Rekas, J. Power Sources 173, 816 (2007)

    Article  Google Scholar 

  30. M. Watanabe, W. Ueno, T. Hayashi, J. Lumin. 122–123, 393 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by The Open Fund Project from the Key Laboratory of Oil and Gas Material (X151515KCL12, 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanhua Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Lin, Y., Zhong, X. et al. Fabrication and characterization of Magneli phase Ti4O7 submicron rods. J Mater Sci: Mater Electron 27, 4861–4865 (2016). https://doi.org/10.1007/s10854-016-4368-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4368-x

Keywords

Navigation