Abstract
Co3O4/graphene composites were synthesized and their high catalytic activity for the activation of peroxymonosulfate to remove the azo dye (Orange II) in aqueous solutions was found. As for the poor quality of rGO by the chemical process of graphene oxide, here, pristine graphite was exfoliated into graphene flakes through direct sonication with assistance of cetyltrimethyl ammonium bromide, which serves as a dispersant in the solvothermal procedure. The physical and chemical performance of Co3O4/graphene was characterised by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and thermogravimetric analysis. The obtained Co3O4 nanocrystals were 15–25 nm in size and connected with each other to form the shape of sticks dispersing on graphene sheets. The Co3O4/graphene composites completely degraded Orange II solutions within 10 min, the catalyst can be reutilized, and the catalytic activity of the Co3O4/graphene dropped slightly after four successive runs. In addition, the mechanism for the formation of Co3O4/graphene nanostructures is also illustrated.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
B.R. Cabo, I.R. Palmeiro, R. Rodil, E. Rodil, A. Arce, A. Soto, J. Mater. Sci. 50, 3576 (2015)
J.F. Ma, K. Wang, L.Y. Li, T.L. Zhang, Y. Kong, S. Komarneni, Ceram. Int. 41, 2050 (2015)
F. Luo, D. Yang, Z.L. Chen, M. Megharaj, R. Naidu, J. Hazard. Mater. 296, 37 (2015)
A.T. Djowe, S. Laminsi, G.L. Noupeyi, E.M. Gaigneaux, Appl. Catal. B 176, 99 (2015)
P.H. Shi, R.J. Su, F.Z. Wan, M.C. Zhu, D.X. Li, S.H. Xu, Appl. Catal. B 123, 265 (2012)
Y.J. Yao, C. Xu, J.C. Qin, F.Y. Wei, M.N. Rao, S.B. Wang, Ind. Eng. Chem. Res. 52, 17341 (2013)
P.R. Shukla, S.B. Wang, H.Q. Sun, H.M. Ang, M. Tadé, Appl. Catal. B 100, 529 (2010)
L. Chen, X.Z. Peng, J.H. Liu, J.J. Li, F. Wu, Ind. Eng. Chem. Res. 51, 13632 (2012)
H.Q. Sun, H.Y. Tian, Y. Hardjono, C.E. Buckley, S.B. Wang, Catal. Today 186, 63 (2012)
Y.X. Wang, H.Q. Sun, H.M. Ang, M.O. Tadéand, S.B. Wang, Chem. Eng. J. 245, 1 (2014)
H.W. Liang, H.Q. Sun, A. Patel, P. Shukla, Z.H. Zhu, S.B. Wang, Appl. Catal. B 127, 330 (2012)
S. Muhammad, E. Saputra, H.Q. Sun, J.C. Izidoro, D.A. Fungaro, H.M. Ang, M.O. Tadé, S.B. Wang, RSC Adv. 2, 5645 (2012)
C.G. Hu, Z.Y. Mou, G.W. Lu, N. Chen, Z.L. Dong, M.J. Hu, L.T. Qu, Chem. Chem. Phys. 15, 13038 (2013)
M.A. Worsley, S.O. Kucheyev, H.E. Mason, M.D. Merrill, B.P. Mayer, J. Lewicki, C.A. Valdez, M.E. Suss, M. Stadermann, P.J. Pauzauskie, J.H. Satcher Jr, J. Biener, T.F. Baumann, Chem. Commun. 48, 8428 (2012)
S. Sattayasamitsathit, Y.G. Gu, K. Kaufmann, W.Z. Jia, X.Y. Xiao, M. Rodriguez, S. Minteer, J. Cha, D.B. Burckel, C.M. Wang, R. Polsky, J. Wang, J. Mater. Chem. A 1, 1639 (2013)
B.G. Choi, S.J. Chang, Y.B. Lee, J.S. Bae, H.J. Kim, Y.S. Huh, J. Mater. Chem. 22, 17278 (2012)
Y.G. Liu, Z.Y. Cheng, H.Y. Sun, H. Arandiyan, J.P. Li, M. Ahmad, J. Power Sources 273, 878 (2015)
S. Chen, J.W. Zhu, X. Wang, J. Phys. Chem. C 114, 11829 (2010)
K. Palanisamy, Y. Kim, H. Kim, J.M. Kim, W.S. Yoon, J. Power Sources 275, 351 (2015)
Q. Wang, C.Y. Zhang, W.F. Shan, L.L. Xing, X.Y. Xue, Mater. Lett. 118, 66 (2014)
L.J. Xie, J.F. Wu, C.M. Chen, C.M. Zhang, L. Wan, J.L. Wang, Q.Q. Kong, C.X. Lv, K.X. Li, G.H. Sun, J. Power Sources 242, 148 (2013)
H.T. Sun, X. Sun, T. Hu, M.P. Yu, F.Y. Lu, J. Lian, J. Phys. Chem. C 118, 2263 (2014)
S.M. Notley, Langmuir 28, 14110 (2012)
J.J. Li, D.D. Miao, R. Yang, L.B. Qu, P.B. Harrington, Electrochim. Acta 125, 1 (2014)
Y. Lin, J. Jin, O. Kusmartsevab, M. Song, J. Phys. Chem. C 117, 17237 (2013)
K. Deori, S.K. Ujjain, R.K. Sharma, S. Deka, A.C.S. Appl, Mater. Interfaces 5, 10665 (2013)
G.M. Bai, H.X. Dai, J.G. Deng, Y.X. Liu, F. Wang, Z.X. Zhao, W.G. Qiu, C.T. Au, Appl. Catal. A 450, 42 (2013)
M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z.M. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, J. Am. Chem. Soc. 131, 3611 (2009)
Y.Y. Liang, Y.G. Li, H.L. Wang, J.G. Zhou, J. Wang, T. Regier, H.J. Dai, Nat. Mater. 10, 780 (2011)
Y.F. Fan, Y.S. Liu, Q. Cai, Y.Z. Liu, J.M. Zhang, Synth. Met. 162, 1815 (2012)
J.L. Wang, Z.X. Shi, Y. Ge, Y. Wang, J.C. Fan, J. Yin, Mater. Chem. Phys. 136, 43 (2012)
D. Ghosh, S. Giri, C.K. Das, Chem. Eng. 1, 1135 (2013)
Z.S. Wu, Y. Sun, Y.Z. Tan, S.B. Yang, X.L. Feng, K. Müllen, J. Am. Chem. Soc. 134, 19532 (2012)
N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X.Y. Hu, X.K. Kong, Q.W. Chen, J. Phys. Chem. C 116, 7227 (2012)
X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, ACS Nano 4, 3206 (2012)
Z.S. Wu, W.C. Ren, L. Wen, L.B. Gao, J.P. Zhao, Z.P. Cjem, G.M. Zhou, F. Li, H.M. Cheng, ACS Nano 6, 3187 (2013)
P. Bautista, A.F. Mohedano, J.A. Casas, J.A. Zazo, J.J. Rodriguez, J. Chem. Technol. Biotechnol. 83, 1323 (2008)
H.Y. Li, Y.H. Gong, Q.Q. Huang, H. Zhang, Ind. Eng. Chem. Res. 52, 15560 (2013)
Y.J. Yao, C. Xu, S.M. Yu, D.W. Zhang, S.B. Wang, Ind. Eng. Chem. Res. 52, 3637 (2013)
P.H. Shi, X.F. Dai, H.A. Zheng, D.X. Li, W.F. Yao, C.Y. Hu, Chem. Eng. J. 240, 264 (2014)
H.Q. Sun, S.Z. Liu, G.L. Zhou, H.M. Ang, M.O. Tadé, S.B. Wang, Interfaces 4, 5466 (2012)
P.H. Shi, R.J. Su, S.B. Zhu, M.C. Zhu, D.X. Li, S.H. Xu, J. Hazard. Mater. 229–230, 331 (2012)
G.P. Anipsitakis, D.D. Dionysiou, Environ. Sci. Technol. 37, 4790 (2003)
Y.X. Wang, S. Indrawirawan, X.G. Duan, H.Q. Sun, H.M. Ang, M.O. Tadé, S.B. Wang, Chem. Eng. J. 266, 12 (2015)
W.H.M. Abdelraheem, X.X. He, X.D. Duan, D.D. Dionysiou, J. Hazard. Mater. 282, 233 (2015)
X.X. He, A.A. de la Cruz, K.E. O’Shea, D.D. Dionysiou, Water Res. 63, 168 (2014)
M.Y. Nassar, I.S. Ahmed, Polyhedron 30, 2431 (2011)
Acknowledgments
The study was supported by National Natural Science Foundation of China (Nos. 21507081, 21271010), Shanghai Municipal Natural Science Foundation (Nos. 15ZR1417800, 14DZ2261000), “Dawn” Program of Shanghai Education Commission (No. 11SG52), Shanghai Key Project for Fundamental Research (No. 13JC1402800), and Scientific Research Foundation of Shanghai University of Electric Power (No. K2014–015).
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Zhou, X.J., Shi, P.H., Qin, Y.F. et al. Synthesis of Co3O4/graphene composite catalysts through CTAB-assisted method for Orange II degradation by activation of peroxymonosulfate. J Mater Sci: Mater Electron 27, 1020–1030 (2016). https://doi.org/10.1007/s10854-015-3847-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-015-3847-9