Skip to main content
Log in

Electrospinning-derived [C/Fe3O4]@C coaxial nanocables with tuned magnetism, electrical conduction and highly efficient adsorption trifunctionality

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

[C/Fe3O4]@C coaxial nanocables with electricity-magnetism-adsorption trifunctionality have been successfully synthesized by carbonization of the electrospun [polyacrylonitrile (PAN)/ferric acetylacetonate (Fe(acac)3)]@polyacrylonitrile (PAN) coaxial nanocables. SEM and TEM observations reveal that the products are coaxial nanocables in morphology. The core diameter is ca. 125 nm and the shell thickness is ca. 82 nm. Electrical and magnetic properties analyses show that the [C/Fe3O4]@C coaxial nanocables possess tunable electrical conductivity and magnetic performance. The N2 adsorption–desorption measurements demonstrate the specific surface area and the pore size of the [C/Fe3O4]@C coaxial nanocables are 322.6 m2/g and 33.6 nm, respectively. [C/Fe3O4]@C coaxial nanocables exhibit efficient adsorption for Rhodamine B and Cu2+ ions aqueous solution with excellent magnetic separation performance. The isotherms and kinetics of adsorption process are determined and analyzed in detail. The excellent adsorption capacity can be attributed to the porous structures, which will make them to be promising adsorbents for water treatment. This work provides a new insight into the design and development of functional carbon-based nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.S. Su, X.W. Chen, G. Weinberg, A. Klein-Hofmann, O. Timpe, R. Schlögl, S.B. Abd Hamid, Angew. Chem. Int. Ed. 44, 5488–5492 (2005)

    Article  Google Scholar 

  2. S. Shama, B.G. Pollet, J. Power Sources 208, 96–119 (2012)

    Article  Google Scholar 

  3. S. Imaizumi, H. Matsumoto, K. Suzuki, M. Minagawa, M. Kimura, A. Tanioka, Polym. J. 41, 1124–1128 (2009)

    Article  Google Scholar 

  4. B.J. Kim, H. Kil, N. Watanabe, M.H. Seo, B.H. Kim, K.S. Yang, O. Kato, J. Miyawaki, I. Mochida, S.H. Yoon, Curr. Org. Chem. 17, 1463–1468 (2013)

    Article  Google Scholar 

  5. Lafdi K, Wright MA, Peters ST, London: Chapman & Hall 169-201 (1998)

  6. M. Stein, J. Wieland, P. Steurer, F. Tölle, R. Mülhaupt, B. Breit, Adv. Synth. Catal. 353, 523–527 (2011)

    Article  Google Scholar 

  7. F.H. Chen, L.M. Zhang, Q.T. Chen, Y. Zhang, Z.J. Zhang, Chem. Commun. 46, 8633–8635 (2010)

    Article  Google Scholar 

  8. H. Tan, J.M. Xue, B. Shuter, X. Li, J. Wang, Adv. Funct. Mater. 20, 722–731 (2010)

    Article  Google Scholar 

  9. J. Liu, Y.C. Zhou, F. Liu, C.P. Liu, J.B. Wang, Y. Pan, D.F. Xue, RSC Adv. 2, 2262–2265 (2012)

    Article  Google Scholar 

  10. F. Wu, R. Huang, D.B. Mu, B.R. Wu, S. Chen, ACS Appl. Mater. Interfaces 6, 19254–19264 (2014)

    Article  Google Scholar 

  11. T. Ren, Y. Si, J.M. Yang, B. Ding, X.X. Yang, F. Hong, J.Y. Yu, J. Mater. Chem. 22, 15919–15927 (2012)

    Article  Google Scholar 

  12. L. Wang, Y. Yu, P.C. Chen, D.W. Zhang, C.H. Chen, J. Power Sources 183, 717–723 (2008)

    Article  Google Scholar 

  13. T. Zhang, D.Q. Huang, Y. Yang, F.Y. Kang, J.L. Gu, Polymer 53, 6000–6007 (2012)

    Article  Google Scholar 

  14. L.M. Lang, Z. Xu, ACS Appl Mater Interfaces 5, 1698–1703 (2013)

    Article  Google Scholar 

  15. M.S. Hassan, T. Amna, I.H. Hwang, M.S. Khil, Colloids Surf., B 106, 170–175 (2013)

    Article  Google Scholar 

  16. L. Liu, S.X. Liu, Q.P. Zhang, C. Li, C.L. Bao, X.T. Liu, P.F. Xiao, J. Chem. Eng. Data 58, 209–216 (2013)

    Article  Google Scholar 

  17. T.K. Sen, M.V. Sarzali, Chem. Eng. J. 142, 256–262 (2008)

    Article  Google Scholar 

  18. E. Alver, A.Ü. Metin, Chem. Eng. J. 200–202, 59–67 (2012)

    Article  Google Scholar 

  19. Panels JE, Lee J, Park KY, Kang SY, Marquez M, Wiesner U, Joo YL, Nanotechnology 19, 455612–455619 (2008)

    Article  Google Scholar 

  20. M. Bayat, H. Yang, F. Ko, Polymer 52, 1645–1653 (2011)

    Article  Google Scholar 

  21. Y.G. Wang, Y. Korai, I. Mochida, K. Nagayama, H. Hatano, N. Fukuda, Carbon 39, 1627–1634 (2001)

    Article  Google Scholar 

  22. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Adv. Funct. Mater. 25, 2436–2443 (2015)

    Article  Google Scholar 

  23. D.D. Yin, Q.L. Ma, X.T. Dong, N. Lv, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci. Mater. Electron. 26, 2658–2667 (2015)

    Article  Google Scholar 

  24. A.E. Eken, E.J. Tozzi, D.J. Klingenberg, W. Bauhofer, Polymer 52, 5178–5185 (2011)

    Article  Google Scholar 

  25. J. Xu, H.B. Yang, W.Y. Fu, Y.M. Sui, H.Y. Zhu, M.H. Li, G.T. Zou, Mater. Sci. Eng. B 132, 307–310 (2006)

    Article  Google Scholar 

  26. Y. Kaburagi, Y. Hishiyama, H. Oka, M. Inagaki, Carbon 39, 593–603 (2001)

    Article  Google Scholar 

  27. W.G. Zheng, S.H. Wong, Compos. Sci. Technol. 63, 225–235 (2003)

    Article  Google Scholar 

  28. G.C. Li, L.L. Guan, Y.Q. Liu, C.G. Liu, J. Phys. Chem. Solids 73, 1055–1060 (2012)

    Article  Google Scholar 

  29. Y.X. Zhang, Y. Jia, Z. Jin, X.Y. Yu, W.H. Xu, T. Luo, B.J. Zhu, J.H. Liu, X.J. Huang, Cryst. Eng. Commun. 14, 3005–3007 (2012)

    Article  Google Scholar 

  30. L. Shi, Z.H. Leng, N. Guo, X.M. Wu, S.C. Gan, Colloids Surf. A Physicochem. Eng. Aspects 446, 163–171 (2014)

    Article  Google Scholar 

  31. Ö. Gercel, A. Özcan, A.S. Özcan, H.F. Gercel, Appl. Surf. Sci. 253, 4843–4852 (2007)

    Article  Google Scholar 

  32. Y.H. Huang, C.L. Hsueh, C.P. Huang, L.C. Su, C.Y. Chen, Sep. Purif. Technol. 55, 23–29 (2007)

    Article  Google Scholar 

  33. M. Thirumavalavan, Y.L. Lai, L.C. Lin, J.F. Lee, J. Chem. Eng. Data 55, 1186–1192 (2010)

    Article  Google Scholar 

  34. S.T. Bosso, J. Enzweiler, Water Res. 36, 4795–4800 (2002)

    Article  Google Scholar 

  35. R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist, R. Wrzalikb, Dalton Trans. 42, 5682–5689 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC 50972020, 51072026), Specialized Research Fund for the Doctoral Program of Higher Education (20102216110002, 20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20130101001JC, 20070402), the Science and Technology Research Project of the Education Department of Jilin Province during the eleventh 5-year plan period (Under Grant No. 2010 JYT01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wensheng Yu or Xiangting Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Ma, Q., Yang, Y. et al. Electrospinning-derived [C/Fe3O4]@C coaxial nanocables with tuned magnetism, electrical conduction and highly efficient adsorption trifunctionality. J Mater Sci: Mater Electron 26, 8054–8064 (2015). https://doi.org/10.1007/s10854-015-3463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3463-8

Keywords

Navigation