Skip to main content
Log in

Microstructure evolution and electrical property improvement of Mn-based thin film thermistors with the sandwich structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mn1.85Co0.3Cu0.3Ni0.55O4 (MCCN), Mn1.85Co0.3Ni0.85O4 (MCN) thin film and MCN–MCCN–MCN sandwich structural thermistors were prepared on Pt/TiO2/Ti/SiO2/Si substrates by sol–gel technique. The crystalline structure, surface and cross-sectional morphologies of the prepared thermistors were analyzed by XRD and FESEM, respectively. The electric properties, such as the resistivity-temperature behaviors, sensitivity, stability, and dielectric constant, were investigated in detail. Compared with the MCCN and MCN thin film thermistors, the MCN–MCCN–MCN sandwich structural thermistor showed good microstructure, low resistivity, high sensitivity, small aging coefficient and moderate dielectric constant. The results showed that the multi-layer structure was an effective way to improve and adjust the properties of NTC thin film thermistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Q. Zhao, B. Zhang, J.C. Yao, J. Mater. Sci. Mater. Electron. 25, 3023–3027 (2014)

    Article  Google Scholar 

  2. Y. Gawli, S. Badadhe, A. Basu, Sens. Actuators B. Chem. 191, 837–843 (2014)

    Article  Google Scholar 

  3. J.C. Yao, B.Y. Zhang, J.H. Wang, Mater. Lett. 112, 69–71 (2013)

    Article  Google Scholar 

  4. H. Gao, C.J. Ma, B. Sun, J. Mater. Sci. Mater. Electron. 25, 3990–3995 (2014)

    Article  Google Scholar 

  5. N. El Horr, S. Guillemet-Fritsch, A. Rousset et al., J. Eur. Ceram. Soc. 34, 317–326 (2014)

    Article  Google Scholar 

  6. W.A. Geoen, C. Metzmacher, P. Huppertz, J. Electroceram. 7, 77–87 (2001)

    Google Scholar 

  7. S. Jagtap, S. Rane, S. Gosavi et al., J. Eur. Ceram. Soc. 28, 2501–2507 (2008)

    Article  Google Scholar 

  8. S. Jagtap, S. Rane, S. Gosavi et al., J. Mater. Sci. Mater. Electron. 21, 861–867 (2010)

    Article  Google Scholar 

  9. G. Ji, A.M. Chang, H.G. Li, Mater. Lett. 130, 127–130 (2014)

    Article  Google Scholar 

  10. Y.Q. Gao, Z.M. Huang, Y. Hou, Mater. Sci. Eng. B 185, 74–78 (2014)

    Article  Google Scholar 

  11. Y.H. Xie, G. Ji, H.J. Bu et al., J. Alloys. Compd. 611, 100–103 (2014)

    Article  Google Scholar 

  12. R.N. Jadhav, V. Puri, J. Alloys. Compd. 507, 151–156 (2010)

    Article  Google Scholar 

  13. K. Xiong, S.X. Zhao, D.F. Li et al., J. Alloys Compd. 606, 273–277 (2014)

    Article  Google Scholar 

  14. S.G. Song, Z. Ling, F. Placido, Mater. Res. Bull. 40, 1081–1093 (2005)

    Article  Google Scholar 

  15. Y.L. Zhao, C.H. Zhao, J. Huang et al., J. Am. Ceram. Soc. 97, 1016–1019 (2014)

    Article  Google Scholar 

  16. L. He, G. Zhang, Z.Y. Ling, Mater. Lett. 128, 144–147 (2014)

    Article  Google Scholar 

  17. G.H. Lei, H.W. Chen, S.X. Zheng, J. Mater. Sci. Mater. Electron. 24, 1203–1207 (2013)

    Article  Google Scholar 

  18. G.M. Gouda, C.L. Nagendra, Sens. Actuators A. Phys. 190, 181–190 (2013)

    Article  Google Scholar 

  19. S.W. Ko, J. Li, N.J. Podraza et al., J. Am. Ceram. Soc. 942, 516–523 (2011)

    Article  Google Scholar 

  20. J. Wu, Z.M. Huang, W. Zhou et al., J. Appl. Phys. 115, 113703 (2014)

    Article  Google Scholar 

  21. Y.Q. Gao, Z.M. Huang, Y. Hou et al., Appl. Phys. A 114, 829–832 (2014)

    Article  Google Scholar 

  22. X.Y. Chen, J.B. Xu, L. Bian et al., Acta. Phys. Sin. 162, 198104 (2013)

    Google Scholar 

  23. S.W. Ko, H.M. Schulze, D.B. Saint John et al., J. Am. Ceram. Soc. 95, 2562–2567 (2012)

    Article  Google Scholar 

  24. R. Schmidt, A. Basu, A.W. Brinkman, Phys. Rev. B. 72, 115101 (2005)

    Article  Google Scholar 

  25. R. Schmidt, A. Basu, A.W. Brinkman, Z. Klusek, Appl. Phys. Lett. 86, 073501 (2010)

    Article  Google Scholar 

  26. C.H. Zhao, B.Y. Wang, P.H. Yang et al., J. Eur. Ceram. Soc. 28, 35–40 (2008)

    Article  Google Scholar 

  27. J.F. Peng, X.J. Zheng, Z.H. Dai, J. Mater. Sci. Mater. Electron. 25, 414–418 (2014)

    Article  Google Scholar 

  28. M. Villegas, J.F. Fernàndez, C. Moure et al., J. Mater. Sci. 29, 4999–5004 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

This work were financially supported by the National key foundation for exploring scientific instrument (2012YQ14000511) and National Undergraduate Training Programs for Innovation and Entrepreneurship (201411819006 and 201411819007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Ling, Z.Y., Wu, M.Y. et al. Microstructure evolution and electrical property improvement of Mn-based thin film thermistors with the sandwich structure. J Mater Sci: Mater Electron 26, 6314–6318 (2015). https://doi.org/10.1007/s10854-015-3218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3218-6

Keywords

Navigation