Skip to main content
Log in

Preparation and characterization of Nd2O3 nanostructures via a new facile solvent-less route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Neodymium oxide (Nd2O3) nanostructures were synthesized via a novel facile solvent-less route. Nanostructures were prepared by heat treatment in air at 900 °C for 5 h, using [Nd L(NO3)2]NO3 (L = bis-(2-hydroxy-1-naphthaldehyde)-butanediamine Schiff base ligand), as precursor, which was obtained by a solvent-free solid–solid reaction from different molar ratios of neodymium nitrate and Schiff base ligand. The as-obtained nanostructures were characterized by means of techniques such as scanning electron microscopy, X-ray diffraction, transmission electron microscopy, thermo-gravimetric analysis, UV–Vis diffuse reflectance spectroscopy, energy dispersive X-ray microanalysis, and Fourier transform infrared spectroscopy. It was found that purity, morphology and particle size of the final Nd2O3 could be dramatically affected via the calcination temperature and molar ratio of neodymium nitrate and Schiff base ligand. The photocatalyst activity of as-prepared nanostructured Nd2O3 was also examined by degradation of rhodamine B as cationic dye under ultraviolet light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11
Scheme 3

Similar content being viewed by others

References

  1. H.Y. Xia, G.Q. He, Y.L. Min, T. Liu, J. Mater. Sci. Mater. Electron. 26, 3357 (2015)

    Article  Google Scholar 

  2. G.V. Khade, M.B. Suwarnkar, N.L. Gavade, K.M. Garadkar, J. Mater. Sci. Mater. Electron. 26, 3309 (2015)

    Article  Google Scholar 

  3. S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Ind. Eng. Chem. 20, 3313 (2014)

    Article  Google Scholar 

  4. A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 617, 93 (2014)

    Article  Google Scholar 

  5. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Int. J. Appl. Ceram. Technol. 11, 654 (2014)

    Article  Google Scholar 

  6. A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 625, 26 (2015)

    Article  Google Scholar 

  7. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Ceram. Int. 41, 567 (2015)

    Article  Google Scholar 

  8. T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian, S. Yoshikawa, Solid State Sci. 10, 20 (2008)

    Article  Google Scholar 

  9. R. Bazzi, M.A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, P. Perriat, J. Lumin. 102, 445 (2003)

    Article  Google Scholar 

  10. M. Zawadzki, L. Kępiński, J. Alloys Compd. 380, 255 (2004)

    Article  Google Scholar 

  11. A. Kosola, J. Päiväsaari, M. Putkonen, L. Niinistö, Thin Solid Films 479, 152 (2005)

    Article  Google Scholar 

  12. T. Liu, Y. Zhang, H. Shao, X. Li, Langmuir 19, 7569 (2003)

    Article  Google Scholar 

  13. F. Delmore, C. Harnois, I. Monot-Laffez, G. Desgardin, Phys. C 372, 1127 (2002)

    Google Scholar 

  14. W. Zhu, J. Ma, L. Xu, W. Zhang, Y. Chen, Mater. Chem. Phys. 122, 362 (2010)

    Article  Google Scholar 

  15. C.R. Michel, A.H. Martinez-Preciado, N.L. Lopez Contreras, Sens. Actuators B 184, 8 (2013)

    Article  Google Scholar 

  16. S.V. Chavan, P.U.M. Sastry, A.K. Tyagi, J. Alloys Compd. 456, 51 (2008)

    Article  Google Scholar 

  17. L. Kępiński, M. Zawadzki, W. Miśta, Solid State Sci. 6, 1327 (2004)

    Article  Google Scholar 

  18. Q. Liqin, W. Kaituo, W. Xuehang, W. Wenwein, L. Sen, L. Gengming, Ceram. Int. 40, 3003 (2014)

    Article  Google Scholar 

  19. S.M. Kaczmarek, G. Leniec, J. Non Cryst. Solids 355, 1325 (2009)

    Article  Google Scholar 

  20. K. Binnemans, Y.G. Galyametdinov, R. Van Deun, D.W. Bruce, S.R. Collinson, A.P. Polishchuk, J. Am. Chem. Soc. 122, 4335 (2000)

    Article  Google Scholar 

  21. Y.L. Zhang, W.W. Qin, W.S. Liu, M.Y. Tan, N. Tang, Spectrochim. Acta A 58, 2153 (2002)

    Article  Google Scholar 

  22. L.M. Sharaf El-Deen, M.S. Al Salhi, M.M. Elkholy, J. Alloys Compd. 465, 333 (2008)

    Article  Google Scholar 

  23. R.L. Snyder Jenkins, Chemical Analysis: Introduction to X-ray Powder Diffractometry (Wiley, New York, 1996), pp. 89–91

    Book  Google Scholar 

  24. R. Bazzi, A. Brenier, P. Perriat, O. Tillement, J. Lumin. 113, 161 (2005)

    Article  Google Scholar 

  25. M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, Polyhedron 35, 149 (2012)

    Article  Google Scholar 

  26. A.V. Prokofiev, A.I. Shelykh, B.T. Melekh, J. Alloys Compd. 242, 41 (1996)

    Article  Google Scholar 

  27. J. Zhong, J. Li, F. Feng, Y. Lu, J. Zeng, W. Hu, Z. Tang, J. Mol. Catal. A Chem. 357, 101 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Council of University of Kashan for providing financial support to undertake this work by Grant No. (159271/388).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortazavi-Derazkola, S., Zinatloo-Ajabshir, S. & Salavati-Niasari, M. Preparation and characterization of Nd2O3 nanostructures via a new facile solvent-less route. J Mater Sci: Mater Electron 26, 5658–5667 (2015). https://doi.org/10.1007/s10854-015-3116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3116-y

Keywords

Navigation