Abstract
Potassium–sodium niobate lead-free piezoceramics have received considerable attention for replacing lead-based ones in some practical applications. This review covers the fundamental aspects of potassium–sodium niobate lead-free piezoelectrics in terms of the relationships between new phase boundaries and high piezoelectric activity. The enhancement in its piezoelectric response is primarily concerned for piezoelectric devices. For a potassium–sodium niobate material, the phase boundaries modifications are important to achieve a high piezoelectric activity. In addition, the compositions concerning phase boundaries have a significant impact on the intensities of piezoelectric properties. Correct evaluation of piezoelectric properties is becoming more important in enabling an accurate comparison of a number of studies based on different systems. In the latter part, our recent advances in its piezoelectric properties are presented with a focus on potassium–sodium niobate to give an overview of the various problems and solutions.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric ceramics (Academic Press, London, 1971)
K. Uchinoin, Ch. 10: present status of piezoelectric/electrostrictive actuators and remaining problems; piezoelectric actuators and ultrasonic motors, ed. by H.L. Tuller, (Kluwer Academic Publishers, Boston, 1997)
N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, N. Setter, Sensors Actuat. A Phys. 105(2), 162–170 (2003)
J.G. Wu, D.Q. Xiao, J.G. Zhu, Chem. Rev. 115(7), 2559–2595 (2015)
D. Lin, D. Xiao, J. Zhu, P. Yu, Appl. Phys. Lett. 88, 062901 (2006)
X.X. Wang, X.G. Tang, H.L.W. Chan, Appl. Phys. Lett. 85, 91–93 (2004)
W. Jo, J.E. Daniels, J.L. Jones, X. Tan, P.A. Thomas, D. Damjanovic, J. Rödel, J. Appl. Phys. 109, 014110 (2011)
R. Dittmer, W. Jo, J. Rödel, S. Kalinin, N. Balke, Adv. Funct. Mater. 22(20), 4208–4215 (2012)
J. Hao, B. Shen, J. Zhai, C. Liu, X. Li, X. Gao, J. Am. Ceram. Soc. 96, 3133–3140 (2013)
J. Kling, W. Jo, R. Dittmer, S. Schaab, H. Kleebe, J. Am. Ceram. Soc. 96, 3312–3324 (2014)
C. Ma, H. Guo, S.P. Beckman, X. Tan, Phys. Rev. Lett. 109, 107602 (2012)
C. Ma, H. Guo, X. Tan, Adv. Funct. Mater. 23(42), 5261–5266 (2013)
A. Singh, R. Chatterjee, J. Am. Ceram. Soc. 96, 509–512 (2013)
W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)
J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, J. Wang, Scr. Mater. 65, 771–774 (2011)
J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, J. Wang, J. Eur. Ceram. Soc. 32, 891–898 (2012)
A. Zeb, Y. Bai, T. Button, S.J. Milne, J. Am. Ceram. Soc. 97, 2479–2483 (2014)
H. Guo, B.K. Voas, S. Zhang, C. Zhou, X. Ren, S.P. Beckman, X. Tan, Phys. Rev. B 90, 014103 (2014)
Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)
E. Cross, Nature 432, 24–25 (2004)
Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121–4223 (2004)
Y. Guo, K. Kakimoto, H. Ohsato, Mater. Lett. 59, 241–244 (2005)
E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87(18), 182905 (2005)
G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang, P. Qi, B.Q. Ming, J. Du, L.M. Zheng, S. Zhang, T.R. Shrout, Appl. Phys. Lett. 88, 212908 (2006)
S. Zhang, R. Xia, T.R. Shrout, J. Electroceram. 19(4), 251–257 (2007)
J. Wu, Y. Wang, D. Xiao, J. Zhu, Z. Pu, Appl. Phys. Lett. 91, 132914 (2007)
J.G. Wu, D.Q. Xiaob, Y.Y. Wang, J.G. Zhu, L. Wu, Y.H. Jiang, Appl. Phys. Lett. 91(25), 252907 (2007)
Z.P. Yang, Y.F. Chang, L.L. Wei, Appl. Phys. Lett. 90(4), 042911 (2007)
H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Z. Pei, Appl. Phys. Lett. 91, 202907 (2007)
H.Y. Park, K.H. Cho, D.S. Paik, S. Nahm, H.G. Lee, D.H. Kim, J. Appl. Phys. 102, 124101 (2007)
E.K. Akdogan, K. Kerman, M. Abazari, A. Safari, Appl. Phys. Lett. 92(11), 112908 (2008)
P. Zhao, B.P. Zhang, J.F. Li, Scr. Mater. 58(6), 429–432 (2008)
R. Zuo, J. Fu, D. Lv, J. Am. Ceram. Soc. 92(1), 283–285 (2009)
D. Xiao, J. Wu, L. Wu, J. Zhu, P. Yu, D. Lin, Y. Liao, Y. Sun, J. Mater. Sci. 44, 5408–5419 (2009)
J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)
Y. Gao, J. Zhang, Y. Qing, Y. Tan, Z. Zhang, X. Hao, J. Am. Ceram. Soc. 94(9), 2968–2973 (2011)
A. Safari, M. Abazari, I.E.E.E.T. Ultrason, Ferr. 57(10), 2165–2176 (2010)
K. Wang, J.F. Li, Adv. Funct. Mater. 20(12), 1924–1929 (2010)
D. Damjanovic, N. Klein, J. Li, V. Porokhonskyy, Funct. Mater. Lett. 3, 5–13 (2010)
R.P. Wang, H. Bando, M. Kidate, Y. Nishihara, M. Itoh, Jpn. J. Appl. Phys. 50, 09ND10 (2011)
Y.M. Li, Z.Y. Shen, L. Jiang, F. Wu, Z.M. Wang, Y. Hong, R.H. Liao, J. Mater. Sci. 22(9), 1409–1414 (2011)
J. Fu, R. Zuo, S.C. Wu, J.Z. Jiang, L. Li, T.Y. Yang, X. Wang, L. Li, Appl. Phys. Lett. 100, 122902 (2012)
J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, J. Am. Ceram. Soc. 96(12), 3677–3696 (2013)
J. Wu, Y. Wang, D. Xiao, J. Zhu, P. Yu, L. Wu, W. Wu, Jpn. J. Appl. Phys. 46, 7375–7377 (2007)
F. Yao, E.A. Patterson, K. Wang, W. Jo, J. Rödel, J. Li, Appl. Phys. Lett. 104, 242912 (2014)
F. Bortolani, A. del Campo, J.F. Fernandez, F. Clemens, F. Rubio-Marcos, Chem. Mater. 26(12), 3838–3848 (2014)
J. Pavlic, B. Malic, T. Rojac, J. Am. Ceram. Soc. 97(5), 1497–1503 (2014)
S. Gupta, A. Belianinov, M.B. Okatan, S. Jesse, S.V. Kalinin, S. Priya, Appl. Phys. Lett. 104, 172902 (2014)
X. Chen, F. He, J. Chen, Y. Wang, H. Zhou, L. Fang, J. Mater. Sci. 25, 2634–2637 (2014)
Y. Huan, X. Wang, Z. Shen, J. Kim, H. Zhou, L. Li, J. Am. Ceram. Soc. 97, 700–703 (2014)
Z. Wang, D. Xiao, J. Wu, M. Xiao, F. Li, J. Zhu, J. Am. Ceram. Soc. 97, 688–690 (2014)
H.E. Mgbemere, M. Hinterstein, G.A. Schneider, J. Am. Ceram. Soc. 96, 201–208 (2013)
J.H. Cho, N.R. Yeom, S.J. Kwon, Y.J. Lee, Y.H. Jeong, M.P. Chun, J.H. Nam, J.H. Paik, B.I. Kim, J. Appl. Phys. 112, 052005 (2012)
P. Bomlai, S.J. Milne, Ferroelectrics 458, 98–105 (2014)
A. Chowdhury, J. Bould, M.G.S. Londesborough, S.J. Milne, Chem. Mater. 22(13), 3862–3874 (2010)
A.J. Royles, A.J. Bell, J.E. Daniels, S.J. Milne, T.P. Comyn, Appl. Phys. Lett. 98, 182904 (2011)
F. Zhu, T.A. Skidmore, A.J. Bell, T.P. Comyn, C.W. James, M. Ward, S.J. Milne, Mater. Chem. Phys. 129, 411–417 (2011)
T.A. Skidmore, T.P. Comyn, A.J. Bell, F. Zhu, S.J. Milne, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1819–1825 (2011)
S. Zhang, H.J. Lee, C. Ma, X. Tan, J. Am. Ceram. Soc. 94, 3659–3665 (2011)
S. Zhang, R. Xia, H. Hao, H. Liu, T.R. Shrout, Appl. Phys. Lett. 92, 152904 (2008)
H. Guo, S. Zhang, S.P. Beckman, X. Tan, J. Appl. Phys. 114, 154102 (2013)
A. Zaman, Y. Iqbal, A. Hussain, M.H. Kim, R.A. Malik, J. Mater. Sci. 49, 3205–3214 (2014)
L. Cheng, J. Zhou, K. Wang, J. Li, Q. Wang, J. Mater. Sci. 47, 6908–6914 (2012)
Z. Wang, J.G. Wu, M. Xiao, D.Q. Xiao, T. Huang, B. Wu, F.X. Li, J.G. Zhu, Ceram. Int. 40, 9165–9169 (2014)
C. Liu, D. Xiao, T. Huang, J. Wu, F. Li, B. Wu, J. Zhu, Mater. Lett. 120, 275–278 (2014)
X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, J. Am. Chem. Soc. 136(7), 2905–2910 (2014)
D. Lin, K.W. Kwok, H.L.W. Chan, J. Appl. Phys. 102, 034102 (2007)
S.J. Zhang, R. Xia, T.R. Shrout, G. Zang, J. Wang, J. Appl. Phys. 100, 104108 (2006)
J.G. Wu, D. Xiao, Y. Wang, J. Zhu, J. Appl. Phys. 103, 024102 (2008)
X. Wang, J. Wu, X. Cheng, B. Zhang, J. Zhu, D. Xiao, Ceram. Int. 39(7), 8021–8024 (2013)
J. Du, G.Z. Zang, X.J. Yi, D.F. Zhang, Z.F. Huang, Mater. Lett. 70, 23–25 (2012)
J. Hao, R. Chu, Z. Xu, G. Zang, G. Li, J. Alloy. Compd. 479(1–2), 376–380 (2009)
R.Z. Zuo, J. Fu, D.Y. Lv, Y. Liu, J. Am. Ceram. Soc. 93(9), 2783–2787 (2010)
I. Coondoo, N. Panwar, R. Rai, H. Amorín, A.L. Kholkin, Phase Trans. 86(11), 1130–1140 (2013)
R. Zuo, X. Fang, C. Ye, Appl. Phys. Lett. 90(9), 092904 (2007)
X.P. Jiang, Q. Yang, Z.D. Yu, F. Hu, C. Chen, N. Tu, Y.M. Li, J. Alloys Compd. 493, 276–280 (2010)
R. Wang, R.J. Xie, K. Hanada, K. Matsusaki, H. Kawanaka, H. Bando, T. Sekiya, M. Itoh, J. Electroceram. 21, 263–266 (2008)
D. Lin, K. Kwok, H.L.W. Chan, Appl. Phys. Let. 91, 143513 (2007)
X. Chen, J. Wu, X. Cheng, B. Wu, W. Wu, D. Xiao, J. Zhu, Curr. Appl. Phys. 12(3), 752–754 (2012)
M. Jiang, X. Liu, G. Chen, Scripta Mater. 60, 909–912 (2009)
X. Chao, Z. Yang, Z. Li, Y. Li, J. Alloys. Compd. 518, 1–5 (2012)
X. Sun, J. Deng, C. Sun, J. Li, J. Chen, R. Yu, G. Liu, X. Xing, L. Qiao, J. Am. Ceram. Soc. 92(8), 1853–1855 (2009)
C. Liu, X. Liua, M. Jiang, J. Ma, J. Alloys Compd. 503, 209–212 (2010)
W. Liang, W. Wu, D.Q. Xiao, J.G. Zhu, J. Am. Ceram. Soc. 94(12), 4317–4322 (2011)
R.Z. Zuo, C. Ye, X.S. Fang, Jpn. J. Appl. Phys. 46(10A), 6733–6736 (2007)
H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Y. Li, Z. Pei, J. Appl. Phys. 104, 034104 (2008)
C. Zhang, Z. Chen, W. Jia, L. Wang, Y.B. Chen, S.H. Yao, S.T. Zhang, Y.F. Chen, J. Alloys Compd. 509, 2425–2429 (2011)
R.Z. Zuo, J. Fu, J. Am. Ceram. Soc. 94, 1467–1470 (2011)
W.F. Liang, W. Wu, D. Xiao, J. Mater. Sci. 46, 6871–6876 (2011)
W.F. Liang, Z. Wang, D.Q. Xiao, J.G. Wu, W.J. Wu, T. Huang, J.G. Zhu, Int. Ferro. 139, 63–74 (2012)
Y.G. Lv, C.L. Wang, J.L. Zhang, L. Wu, M.L. Zhao, J.P. Xu, Mater. Res. Bull. 44, 284–287 (2009)
R. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, M. Itoh, Phys. Status Solidi: Rapid Res. Lett. 3, 142–144 (2009)
X. Wang, J. Wu, D. Xiao, X. Cheng, T. Zheng, X. Lou, B. Zhang, J. Zhu, A.C.S. Appl, Mater. Interfaces 6(9), 6177–6180 (2014)
X. Wang, J. Wu, D. Xiao, X. Cheng, T. Zheng, B. Zhang, X. Lou, J. Zhu, J. Mater. Chem. A 2(12), 4122–4126 (2014)
J. Wu, J. Xiao, T. Zheng, X. Wang, X. Cheng, B. Zhang, D. Xiao, J. Zhu, Scripta Mater. 88, 41–44 (2014)
T. Zheng, J. Wu, X. Cheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Wang, X. Lou, J. Mater. Chem. C 2(41), 8796–8803 (2014)
J. Wu, Y. Yang, X. Wang, D. Xiao, J. Zhu, J. Mater. Sci. 25(10), 4650–4656 (2014)
B. Zhang, J. Wu, X. Cheng, X. Wang, D. Xiao, J. Zhu, X. Wang, X. Lou, ACS Appl. Mater. Interfaces 5(16), 7718–7725 (2013)
T. Zheng, J. Wu, X. Cheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, Dalton Trans. 43, 9419–9426 (2014)
T. Zheng, J. Wu, X. Cheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Lou, X. Wang, Dalton Trans. 43, 11759–11766 (2014)
X. Cheng, J. Wu, X. Lou, X. Wang, X. Wang, D. Xiao, J. Zhu, A.C.S. Appl, Mater. Interfaces 6(2), 750–756 (2014)
X.J. Cheng, J.G. Wu, X.P. Wang, Appl. Phys. Lett. 103, 052906 (2013)
X. Cheng, J. Wu, X. Wang, B. Zhang, X. Lou, X. Wang, D. Xiao, J. Zhu, A.C.S. Appl, Mater. Inter. 5(21), 10409–10417 (2013)
X. Cheng, J. Wu, T. Zheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Wang, X. Lou, J. Alloy. Compd. 610C, 86–91 (2014)
X. Cheng, J. Wu, X. Wang, B. Zhang, J. Zhu, D. Xiao, X. Wang, X. Lou, W. Liang, J. Appl. Phys. 114, 124107 (2013)
X. Cheng, J. Wu, X. Wang, B. Zhang, J. Zhu, D. Xiao, Dalton Trans. 43, 3434–3442 (2014)
X. Wang, J. Wu, X. Lv, H. Tao, X. Cheng, T. Zheng, B. Zhang, D. Xiao, J. Zhu, J. Mater. Sci. 25(7), 3219–3225 (2014)
X.J. Cheng, Q. Gou, J.G. Wu, X.P. Wang, B.Y. Zhang, D.Q. Xiao, J.G. Zhu, X.J. Wang, X.J. Lou, Ceram. Int. 40, 5771–5779 (2014)
J. Wu, X. Wang, X. Cheng, T. Zheng, B. Zhang, D. Xiao, J. Zhu, J. Appl. Phys. 115, 114104 (2014)
T. Zheng, J. Wu, D. Xiao, J. Zhu, Scripta Mater. 94, 25–27 (2015)
J. Wu, H. Tao, Y. Yuan, X. Lv, X. Wang, X. Lou, RSC Adv. 5, 14575–14583 (2015)
Acknowledgments
We acknowledge the supports of the National Science Foundation of China (NSFC Nos. 51102173, 51272164, 51332003, and 51472169), the Fundamental Research Funds for the Central Universities (2012SCU04A01), and the College of Materials Science and Engineering of Sichuan University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, J., Xiao, D. & Zhu, J. Potassium–sodium niobate lead-free piezoelectric ceramics: recent advances and perspectives. J Mater Sci: Mater Electron 26, 9297–9308 (2015). https://doi.org/10.1007/s10854-015-3084-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-015-3084-2