Skip to main content
Log in

Interfacial effect: magnetism in pure ZrO2, ZnO and SiO2 coated core/shell/shell hybrid nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the room temperature magnetic behavior of pure and dual shells ZnO as well as SiO2 coated ZrO2 core–shell nanoparticles. All the samples, viz., ZrO2, ZrO2/ZnO and ZrO2/ZnO/SiO2 nanocrystallites have been successfully synthesized by chemical precipitation method. The XRD studies confirm the tetragonal structure for pure Zirconia and hexagonal wurtzite structure for ZnO coated ZrO2 samples. Average size of nanocrystallites has been observed to increase due to the incorporation of the shells over ZrO2. Studies of SEM, TEM and EDAX were used to determine the morphology, size and presence of elements in the ZrO2 nanocrystallites. The existence of SiO2 on ZrO2@ZnO was characterized by FT-IR measurement. The VSM studies have shown that the dual shells ZnO as well as SiO2 coated ZrO2 samples exhibit S-shaped paramagnetic behavior of the samples with little variations. The paramagnetic ordering of this core–shell nanostructure was mainly attributed to oxygen vacancies and also to the minor impurity phases in Zirconia and ZnO lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.S.R. Channua, R.R. Kallurub, M. Schlesin, Colloids and Surfaces A: physicochem. Eng. Asp. 386, 151–157 (2011)

    Google Scholar 

  2. M.J. MacLachlan, I. Manners, G.A. Ozin, New (Inter) Faces: Polym. Inorg. Mater. Adv. Mater. 12, 675–681 (2000)

    Google Scholar 

  3. M.J. Mayo, J.R. Seidensticker, D.C. Hague, A.H. Carim, Nanostruct. Mater. 11, 271–282 (1999)

    Article  Google Scholar 

  4. G. Cao, Nanostructures and Nanomaterials (Imperial College Press, London, 2004), pp. 47–75

    Book  Google Scholar 

  5. X. Lou, Z. Liu, S. Wang, Y. Xiu, C.P. Wong, M. Liu, J. Power. Sources. 195, 419–424 (2010)

    Article  Google Scholar 

  6. H. Teisala, M. Tuominen, M. Aromaa, J.M. Makela, M. Stepien, J.J. Saarinen, M. Toivakka, J. Kuusipalo, Surf. Coat. Technol. 205, 436–445 (2010)

    Article  Google Scholar 

  7. C.W. Raubach, M.Z. Krolow, M.F. Mesko, S. Cava, M.L. Moreir, E. Longo, N.L.V. Carreno, CrystEngComm 14, 393–396 (2012)

    Article  Google Scholar 

  8. E. Roduner, Chem. Soc. Rev. 35, 583–592 (2006)

    Article  Google Scholar 

  9. B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Int. J. Mol. Sci. 14, 21266–21305 (2013)

    Article  Google Scholar 

  10. J. Requejo-Isidro, R. Del Coso, J. Solis, J. Gonzalo, C.N. Afonso, Appl. Phys. Lett. 86, 193104–193107 (2005)

    Article  Google Scholar 

  11. C. Buzea, I.I.P. Blandino, K. Robbie, Bio Inter Phases 2, MR17–MR172 (2007)

    Google Scholar 

  12. A. Shavel, N. Gaponik, A. Eychmüller, Eur. J. Inorg. Chem. 85, 3613–3623 (2005)

    Article  Google Scholar 

  13. C. Piconi, G. Maccauro, Biomaterials 20, 1–25 (1999)

    Article  Google Scholar 

  14. R.C. Garvie, R.H. Hannink, Nature 258, 703–706 (1975)

    Article  Google Scholar 

  15. R.C. Garvie, P.S. Nicholson, J. Am. Ceram. Soc. 55, 152–158 (1972)

    Article  Google Scholar 

  16. M. Leoni, R.L. Jones, P. Scardi, Surf. Coat. Technol. 108, 107–113 (1998)

    Article  Google Scholar 

  17. T.K. Gupta, J.H. Bechtold, R.C. Kuznickie, L.H. Cadoff, B.R. Rossing, J. Mater. Sci. 13, 1464–1470 (1978)

    Article  Google Scholar 

  18. P.K. Pujari, Thesis May 2011

  19. J.R. Kelly, I. Denry, Dent. Mater. 24, 289–298 (2008)

    Article  Google Scholar 

  20. R. Srinivasan, R.J. De Angelis, G. Ice, B.H. Davis, J. Mater. Res. 6, 1292–1297 (1991)

    Article  Google Scholar 

  21. V. Rebuttini, A. Pucci, P. Arosio, X. Bai, E. Locatelli, N. Pinna, A. Lascialfari, M.C. Franchini, J. Mater. Chem. 1, 919–923 (2013)

    Article  Google Scholar 

  22. U. Jeong, X.W. Teng, Y. Wangther, H. Yang, Y.N. Xia, Adv. Mater. 19, 33–60 (2007)

    Article  Google Scholar 

  23. N.R. Jana, C. Earhart, J.Y. Ying, Chem. Mater. 19, 5074–5082 (2007)

    Article  Google Scholar 

  24. K. ManiRahulan, G. Vinitha, L.D. Stephen, C.C. Kanakam, Ceram. Int. 39, 5281–5286 (2013)

    Article  Google Scholar 

  25. S. Tachikawa, A. Noguchi, T. Tsuge, M. Hara, O. Odawara, H. Wada, Materials 4, 1132–1143 (2011)

    Article  Google Scholar 

  26. A. Bagabas, A. Alshammari, M.F.A. Aboud, H. Kosslick, Nanoscale. Res. Lett. 8, 516–526 (2013)

    Article  Google Scholar 

  27. D. Vollath, D.V. Szabo, Nanostruct. Mater. 4, 927–938 (1994)

    Article  Google Scholar 

  28. D. Vollath, D.V. Szabo, J. HauBelt, J. Eur. Ceram. Soc. 17, 1317–1324 (1997)

    Article  Google Scholar 

  29. V.V. Srdic, B. Mojic, M. Nikolic, S. Ognjanovic, Process. Appl. Ceram. 7, 45–62 (2013)

    Article  Google Scholar 

  30. K. Geethalakshmi, T. Prabhakaran, J. Hemalatha, World Acad Sci. Eng. Technol. 64, 179–182 (2012)

    Google Scholar 

  31. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface. Sci. 26, 62–69 (1968)

    Article  Google Scholar 

  32. M.Y.M. Sulaiman, J. Nucl. Relat. Technol. 2, 11–18 (2005)

    Google Scholar 

  33. K. Anandan, V. Rajendran, J. Phys. Sci. 17, 179–184 (2013)

    Google Scholar 

  34. L.A. Perez-Maqueda, E. Matijevic, J. Mater. Res. 12, 3286–3292 (1997)

    Article  Google Scholar 

  35. H. Kumar, R. Rani, I. Lett. Chem. Phys. Astron. 14, 26–36 (2013)

    Google Scholar 

  36. E. Tirosh, G. Markovich, Adv. Mater. 9, 2608–2612 (2007)

    Article  Google Scholar 

  37. J.M.D. Coey, M. Venkatesan, P. Stamenov, C.B. Fitzgerald, L.S. Dorneles, Phys. Rev. B 72, 024450–024456 (2005)

    Article  Google Scholar 

  38. B. Martínez, F. Sandiumenge, L. Balcells, Appl. Phys. Lett. 86, 103113–103116 (2005)

    Article  Google Scholar 

  39. Y. Cong, B. Li, S. Yue, D. Fan, J. Phys. Chem. C 113, 13974–13978 (2009)

    Article  Google Scholar 

  40. J. Sivasankari, S. Sankar, S. Selvakumar, K. Sivaji, J. Alloy. Compd. 615, 4–11 (2014)

    Article  Google Scholar 

  41. J. Zippel, M. Lorenz, A. Setzer, M. Rothermel, D. Speman, P. Esquinazi, M. Grundmann, G. Wagner, R. Denecke, A.A. Timopheev, J. Phys. D: Appl. Phys. 46, 275002–275012 (2013)

    Article  Google Scholar 

  42. G. Clavel, M.-G. Willinger, D. Zitoun, N. Pinna, Eur. J. Inorg. Chem. 6, 863–868 (2008)

    Article  Google Scholar 

  43. N. Selvi, S. Sankar, K. Dinakaran, Mater. Sci.: Mater. Electron. 24, 4873–4880 (2013)

    Google Scholar 

  44. A. Pucci, G. Clavel, M.-G. Willinger, D. Zitoun, N. Pinna, J. Phys. Chem. C 113, 12048–12058 (2009)

    Article  Google Scholar 

  45. J. Yu, L.B. Duan, Y.C. Wang, G.H. Rao, Phys. B 403, 4264–4268 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvi, N., Sankar, S. & Dinakaran, K. Interfacial effect: magnetism in pure ZrO2, ZnO and SiO2 coated core/shell/shell hybrid nanoparticles. J Mater Sci: Mater Electron 26, 273–279 (2015). https://doi.org/10.1007/s10854-014-2395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2395-z

Keywords

Navigation