Skip to main content
Log in

Influence of electrode position in the electrolytic cell configuration for the electrodeposition of Cu(In,Ga)Se2 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu(In,Ga)Se2 (CIGS) is a semiconductor that has an absorption coefficient (more than 105) suitable for building high efficiency thin film solar cells. There are a lot of reports that mention different techniques to CIGS synthesis. These techniques can involve physical or chemical processes with technical and economical advantages and disadvantages. Probably, one of the major obstacles to CIGS solar cell commercialization is that there are various synthesis techniques for this type of solar cell and the most economical and feasible techniques do not produce an adequate absorber formation. Among these processes, electrodeposition is a versatile technique due to the possibility of making CIGS films in a large area. However, one of the major problems during the CIGS growth by electrodeposition is the microcracks formation stemming from some experimental conditions such as bath composition, type of substrate, electrode distance, etc. In this paper, the electrolytic cell for CIGS co-electrodeposition was analyzed in order to know the film composition and morphology as a function of electrode position in the electrolytic cell. We found that the CIGS film composition was not homogeneous and the morphology was not uniform in an electrolytic cell with electrodes placed vertically. As a result of the previous experimentation, we have designed an electrolytic cell with horizontal electrodes where the composition was more homogeneous and the morphology was more uniform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Santbergen, J.M. Goud, M. Zeman, J.A.M. van Roosmalen, R.J.C. van Zolingen, Sol. Energ. Mat. Sol. Cells 94, 715 (2010)

    Article  Google Scholar 

  2. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovolt. Res. Appl. 19, 894 (2011)

    Article  Google Scholar 

  3. A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Nat. Mater. 12, 1107 (2013)

    Article  Google Scholar 

  4. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, Prog. Photovolt. Res. Appl. 16, 235 (2008)

    Article  Google Scholar 

  5. B. M. Başol, M. Pinarbaşi, S. Aksu, J. Freitag, P. Gonzalez, T. Johnson, Y. Matus, B. Metin, M. Narasimhan, D. Nayak, G. Norsworthy, D. Soltz, J. Wang, T. Wang, H. Zolla, in 34th IEEE Phot. Spec. Conf. (PVSC), 2310 (2009)

  6. S. Aksu, M. Pinarbasi, in 37th IEEE Phot. Spec. Conf. (PVSC), 310 (2011)

  7. M.E. Calixto, K.D. Dobson, B.E. McCandless, R.W. Birkmire, J. Electrochem. Soc. 153, G521 (2006)

    Article  Google Scholar 

  8. R.N. Bhattacharya, M.K. Oh, Y. Kim, Sol. Energ. Mat. Sol. Cells 98, 198 (2012)

    Article  Google Scholar 

  9. L. Ribeaucourt, E. Chassaing, G. Savidand, D. Lincot, Thin Solid Films 519, 7241 (2011)

    Article  Google Scholar 

  10. A.M. Fernández, R.N. Bhattacharya, Thin Solid Films 474, 10 (2005)

    Article  Google Scholar 

  11. R.N. Bhattacharya, A.M. Fernández, Sol. Energ. Mat. Sol. Cells 76, 331 (2003)

    Article  Google Scholar 

  12. J. Liu, F. Liu, Y. Lai, Z. Zhang, J. Li, Y. Liu, J. Electroanal. Chem. 651, 191 (2011)

    Article  Google Scholar 

  13. Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li, Y. Liu, Electrochim. Acta 54, 3004 (2009)

    Article  Google Scholar 

  14. R.C. Valderrama, M. Miranda-Hernández, M.A. Carreón, P.J. Sebastián, ECS Trans. 29, 163 (2010)

    Article  Google Scholar 

  15. E. Chassaing, P.-P. Grand, O. Ramdani, J. Vigneron, A. Etcheberry, D. Lincot, J. Electrochem. Soc. 157, D387 (2010)

    Article  Google Scholar 

  16. H. Huang, C. Lin, F. Chen, W. Li, Electrochi. Acta 97, 244 (2013)

    Article  Google Scholar 

  17. Y. Lai, J. Liu, J. Yang, B. Wang, F. Liuz, Z. Zang, J. Li, J.Y. Liu, J. Electrochem. Soc. 158, D704 (2011)

    Article  Google Scholar 

  18. R.K. Pandey, S.N. Sahu, S. Chandra, Handbook of semiconductor electrodeposition (Marcel Dekker, New York, 1996)

    Google Scholar 

  19. J.M. Huth, H.L. Swinney, W.D. McCormick, A. Kuhn, F. Argoul, Phys. Rev. E 51, 3444 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

B. Lara-Lara would like to thank PROMEP-UASLP for the scholarship. This work was supported through the Project CONACYT-82306 and CONACYT-UNAM 123122 (LIFYCS), especially with the use of SEM/EDX-Hitachi SU1510. Also, we would like to thank Maria Luisa Ramon García of IER-UNAM for the XRD measurement and José Campos Álvarez of IER-UNAM for SEM/EDX assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Fernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara-Lara, B., Fernández, A.M. Influence of electrode position in the electrolytic cell configuration for the electrodeposition of Cu(In,Ga)Se2 thin films. J Mater Sci: Mater Electron 26, 5593–5602 (2015). https://doi.org/10.1007/s10854-014-2319-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2319-y

Keywords

Navigation