Skip to main content
Log in

A single flexible nanofiber to obtain simultaneous tunable color-electricity bifunctionality

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

For the purpose of developing new-typed multifunctional composite nanofibers, novel composite nanofibers with tunable color-electricity bifunctionality have been successfully fabricated via facile one-pot electrospinning technology. The obtained bifunctional composite nanofibers are composed of polyvinyl pyrrolidone (PVP) as the matrix, Tb(BA)3phen and Eu(BA)3phen (BA = benzoic acid, phen = phenanthroline) as luminescence materials and polyaniline (PANI) as conductive material. Scanning electron microscopy, energy dispersive spectrometry, fluorescence spectroscopy and Hall effect measurement system are used to characterize the morphology structure and properties of the [Tb(BA)3phen + Eu(BA)3phen]/PANI/PVP composite nanofibers. The results indicate that the bifunctional composite nanofibers possess excellent photo luminescence and electrical conduction. The emitting color of the luminescent composite nanofibers can be tuned by adjusting the mass ratios of Tb(BA)3phen, Eu(BA)3phen and PANI in a wide color range of red-yellow-green under the excitation of 297-nm single-wavelength ultraviolet light. The electrical conductivity reaches up to the order of 10−4 S/cm. The luminescent intensity and electrical conductivity of the composite nanofibers can be tunable by adding various amounts of Tb(BA)3phen, Eu(BA)3phen and PANI. The bifunctional composite nanofibers are expected to possess many potential applications in areas such as color display, electromagnetic shielding, molecular electronics and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z.Y. Zhang, C.L. Shao, X.H. Li, Y.Y. Sun, M.Y. Zhang, J.B. Mu, P. Zhang, Z.C. Guo, Y.C. Liu, Nanoscale 5, 606–618 (2013)

    Article  Google Scholar 

  2. J. Song, M.L. Chen, M.B. Olesen, C.X. Wang, R. Havelund, Q. Li, E.Q. Xie, R. Yang, P. Bøggild, C. Wang, F. Besenbacher, M.D. Dong, Nanoscale 3, 4966–4971 (2011)

    Article  Google Scholar 

  3. W. Wang, Z.Y. Li, X.R. Xu, B. Dong, H.N. Zhang, Z.J. Wang, C. Wang, R.H. Baughman, S.L. Fang, Small 7, 597–600 (2011)

    Article  Google Scholar 

  4. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, ChemPlusChem 79, 290–297 (2014)

    Article  Google Scholar 

  5. G.Q. Gai, L.Y. Wang, X.T. Dong, C.M. Zheng, W.S. Yu, J.X. Wang, X.F. Xiao, J. Nanopart. Res. 15, 1539 (2013)

    Article  Google Scholar 

  6. G.Q. Gai, L.Y. Wang, X.T. Dong, S.Z. Xu, J. Mater. Sci. 48(15), 5140 (2013)

    Article  Google Scholar 

  7. W.W. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, Chem. Eng. J. 244, 531–539 (2014)

    Article  Google Scholar 

  8. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, ChemPlusChem 79, 290–297 (2014)

    Article  Google Scholar 

  9. Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, Opt. Mater. 35, 526 (2013)

    Article  Google Scholar 

  10. W. Sambaer, M. Zatloukal, D. Kimmer, Chem. Eng. Sci. 66, 613–623 (2011)

    Article  Google Scholar 

  11. Z.Y. Zhang, X.H. Li, C.H. Wang, L.M. Wei, Y.C. Liu, C.L. Shao, J. Phys. Chem. C 113, 19397–19403 (2009)

    Article  Google Scholar 

  12. X.F. Lu, C. Wang, Y. Wei, Small 5, 2349–2370 (2009)

    Article  Google Scholar 

  13. G.G. Li, Z.Y. Hou, C. Peng, W.X. Wang, Z.Y. Cheng, C.X. Li, H.Z. Lian, J. Lin, Adv. Funct. Mater. 20, 3446–3456 (2010)

    Article  Google Scholar 

  14. X.H. Li, C.L. Shao, Y.C. Liu, X.T. Zhang, S.K. Hark, Mater. Lett. 62, 2088–2091 (2008)

    Article  Google Scholar 

  15. Z.Y. Li, H.M. Huang, C. Wang, Macromol. Rapid. Commun. 27, 152–155 (2006)

    Article  Google Scholar 

  16. W.B. Ma, Z.P. Shi, R. Wang, J. Alloys Compd. 503, 118 (2010)

    Article  Google Scholar 

  17. C.H. Huang, T.M. Chen, J. Phys. Chem. C 115, 2349 (2011)

    Article  Google Scholar 

  18. J.Y. Sun, J.L. Lai, J.C. Zhu, Z.G. Xia, H.Y. Du, Ceram. Int. 38(7), 5341 (2012)

    Article  Google Scholar 

  19. L.C. Ju, C. Cai, Q.Q. Zhu, J. Mater. Sci. Mater. Electron. 24(11), 4516 (2013)

    Article  Google Scholar 

  20. M.S. Tremblay, M. Halim, D. Sames, J. Am. Chem. Soc. 129(24), 7570 (2007)

    Article  Google Scholar 

  21. A. Lidia, B. Gregorio, Q. Silvio, C. Marco, C.R. Maria, B. Francesco, A. Gianluca, Chem. Commun. 28, 2911 (2007)

    Google Scholar 

  22. Q.L. Lai, H.F. Lu, D.X. Wang, Macromol. Chem. Phys. 212, 1435 (2011)

    Google Scholar 

  23. D.H. Zhang, Y.Y. Wang, Mater. Sci. Eng. B 134, 9–19 (2006)

    Article  Google Scholar 

  24. S. Virji, R.B. Kaner, B.H. Weiller, Chem. Mater. 17, 1256–1260 (2005)

    Article  Google Scholar 

  25. Q.H. Zhang, H.F. Jin, X.H. Wang, X.B. Jing, Synth. Met. 123, 481–485 (2001)

    Article  Google Scholar 

  26. Q.Z. Yu, M.M. Shi, M. Deng, M. Wang, H.Z. Chen, Mater. Sci. Eng. B 150, 70–76 (2008)

    Article  Google Scholar 

  27. F. Chabert, D.E. Dunstan, G.V. Franks, J. Am. Ceram. Soc. 91, 3138–3146 (2008)

    Article  Google Scholar 

  28. J.B. Ballengee, P.N. Pintauro, J. Electrochem. Soc. 158, B568–B572 (2011)

    Article  Google Scholar 

  29. S.V. Kolotilov, O. Cador, F. Pointillart, S. Golhen, Y.L. Gal, K.S. Gavrilenko, L. Ouahab, J. Mater. Chem. 20, 9505–9514 (2010)

    Article  Google Scholar 

  30. Y.H. Wang, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Chem. J. Chin. U 8, 1657–1662 (2012)

    Google Scholar 

  31. S.B. Meshkova, J. Fluoresc. 10(4), 333 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC 50972020, 51072026), Specialized Research Fund for the Doctoral Program of Higher Education (20102216110002, 20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20130101001JC, 20070402), the Science and Technology Research Project of the Education Department of Jilin Province during the eleventh five-year plan period (Under Grant No. 2010JYT01), Key Research Project of Science and Technology of Ministry of Education of China (Grant No. 207026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangting Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lun, K., Ma, Q., Dong, X. et al. A single flexible nanofiber to obtain simultaneous tunable color-electricity bifunctionality. J Mater Sci: Mater Electron 25, 5395–5402 (2014). https://doi.org/10.1007/s10854-014-2318-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2318-z

Keywords

Navigation