Skip to main content
Log in

Microstructure dependence of magnetic properties on electrochemically produced ternary CuCoNi alloys

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ternary CuCoNi alloys were deposited by electrodeposition and the effect of different deposition potentials on the microstructural and magnetic properties of the alloys was investigated. The deposition potential was changed from −1.0 to −1.3 V versus saturated calomel electrode. Anomalous co-deposition occurred for all ternary alloys. All alloys have a face centered cubic (fcc) crystalline structure and the peaks of fcc Cu transformed to those of fcc Ni when the deposition potential was increased from −1.0 to −1.3 V, which was confirmed by the energy dispersive X-ray spectroscopy. The atomic Ni content of the ternary alloys increased from 8 to 33 % when the deposition potential was increased from −1.0 to −1.3 V. On the film surfaces, a specific growth orientation and micro-sticks gradually altered to spherical micro-grains when the deposition potential was increased. Saturation magnetization, Ms and coercivity, Hc of the alloys were significantly affected by different deposition potentials. The Ms value varied between 308 and 674 emu/cm3 when the deposition potential was changed from −1.0 to −1.3 V. And, the Hc gradually decreased from 169 Oe to 112 Oe when the potential increased from −1.0 to −1.3 V. The changes in the magnetic properties of the alloys are related with the variations in the microstructural properties caused by deposition potential. Besides, the anisotropic magnetoresistance magnitudes were found to depend on the deposition potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Osaka, Electrochim. Acta 45, 3311–3321 (2000)

    Article  Google Scholar 

  2. G.R. Pattanaik, D.K. Pandya, S.C. Kashyap, Thin Solid Films 433, 247–251 (2003)

    Article  Google Scholar 

  3. M. Safak, M. Alper, H. Kockar, J. Magn. Magn. Mater. 304, e784–e786 (2006)

    Article  Google Scholar 

  4. Y. Jyoko, S. Kashiwabara, Y. Hayashi, W. Schwarzacher, IEEE Trans. Magn. 34, 3910–3912 (1998)

    Article  Google Scholar 

  5. N.V. Myung, K. Nobe, J. Electrochem. Soc. 148(3), C136–C144 (2001)

    Article  Google Scholar 

  6. S. Mehrizi, M. Heydarzadeh Sohi, S.A. Seyyed Ebrahimi, Surf. Coat. Technol. 205, 4757–4763 (2011)

    Article  Google Scholar 

  7. D. Kim, D.-Y. Park, B.Y. Yoo, P.T.A. Sumodjo, N.V. Myung, Electrochim. Acta 48, 819–830 (2003)

    Article  Google Scholar 

  8. C.-R. Chang, IEEE Trans. Magn. 36, 1214–1217 (2000)

    Article  Google Scholar 

  9. C. Qiang, J. Xu, S. Xiao, Y. Jiao, Z. Zhang, Y. Liu, L. Tian, Z. Zhou, Appl. Surf. Sci. 257, 1371–1376 (2010)

    Article  Google Scholar 

  10. H. Kockar, M. Alper, T. Sahin, M. Safak Haciismailoglu, J. Nanosci. Nanotechnol. 10, 7639–7642 (2010)

    Article  Google Scholar 

  11. I. Vītiņa, V. Belmane, A. Krūmiņa, V. Rubene, Surf. Coat. Technol. 205, 2893–2898 (2011)

    Article  Google Scholar 

  12. R. Chesnutt, J. Appl. Phys. 73, 6223 (1993)

    Article  Google Scholar 

  13. K. Hironaka, S. Uedaira, IEEE Trans. Magn. 26, 2421 (1990)

    Article  Google Scholar 

  14. L. Perez, K. Attenborough, J. De Boeck, J.P. Celis, C. Aroca, P. Sánchez, E. López, M.C. Sánchez, J. Magn. Magn. Mater. 242–245, 163–165 (2002)

    Article  Google Scholar 

  15. P.C. Andrıcacos, N. Robertson, IBM J. Res. Develop. 42, 671–680 (1998)

    Article  Google Scholar 

  16. E. Gómez, S. Pané, E. Vallés, Electrochim. Acta 51, 146–153 (2005)

    Article  Google Scholar 

  17. S. Pané, E. Gómez, E. Vallés, J. Electroanal. Chem. 596, 87–94 (2006)

    Article  Google Scholar 

  18. I.H. Karahan, O.F. Bakkaloglu, M. Bedir, Pramana J. Phys. 68(1), 83–90 (2007)

    Article  Google Scholar 

  19. O. Icelli, S. Erzeneoglu, I.H. Karahan, G. Cankaya, J. Quant. Spectrosc. Radiat. Transf. 91, 485–491 (2005)

    Article  Google Scholar 

  20. B.N. Mondal, A. Basumallick, P.P. Chattopadhyay, J. Alloys Compd. 457, 10–14 (2008)

    Article  Google Scholar 

  21. B.N. Mondal, A. Basumallick, P.P. Chattopadhyay, Mater. Sci. Eng., B 166, 174–179 (2010)

    Article  Google Scholar 

  22. S. Curiotto, E. Johnson, F. Celegato, M. Coisson, N. Pryds, J. Magn. Magn. Mater. 321, 131–136 (2009)

    Article  Google Scholar 

  23. S. Zhanbo, Z. Yaomin, L. Xiaoyuan, S. Xiaoping, J. Magn. Magn. Mater. 269, 341–345 (2004)

    Article  Google Scholar 

  24. I. Hanafi, A.R. Daud, S. Radiman, M.H.A. Ghani, S. Budi, J. Phys. Conf. Ser. 431, 012013 (2013)

    Article  Google Scholar 

  25. A. Karpuz, H. Kockar, M. Alper, Appl. Surf. Sci. 258, 5046–5051 (2012)

    Article  Google Scholar 

  26. A.N. Correia, S.A.S. Machado, Electrochim. Acta 45, 1733–1740 (2000)

    Article  Google Scholar 

  27. H. Kockar, M. Alper, T. Sahin, O. Karaagac, J. Magn. Magn. Mater. 322, 1095–1097 (2010)

    Article  Google Scholar 

  28. A. Karpuz, H. Kockar, M. Alper, O. Karaagac, M. Haciismailoglu, Appl. Surf. Sci. 258, 4005–4010 (2012)

    Article  Google Scholar 

  29. B.G. Toth, L. Peter, A. Revesz, J. Padar, I. Bakonyi, Eur. Phys. J. B 75, 167–177 (2010)

    Article  Google Scholar 

  30. A. Karpuz, H. Kockar, M. Alper, Appl. Surf. Sci. 257, 3632–3635 (2011)

    Article  Google Scholar 

  31. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, 1978)

    Google Scholar 

  32. A. Karpuz, H. Kockar, M. Alper, J. Supercond. Nov. Magn 26, 651–655 (2013)

    Article  Google Scholar 

  33. D. Jiles, Introduction to Magnetism and Magnetic Materials (Chapman and Hall, London, 1991)

    Book  Google Scholar 

  34. B.B. Straumal, A.A. Mazilkin, S.G. Protasova, S.V. Dobatkin, A.O. Rodin, B. Baretzky, D. Goll, G. Schütz, Mater. Sci. Eng. A 503, 185–189 (2009)

    Article  Google Scholar 

  35. O. Ergeneman, K.M. Sivaraman, S. Pané, E. Pellicer, A. Teleki, A.M. Hirt, M.D. Baró, B.J. Nelson, Electrochim. Acta 56, 1399–1408 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Balikesir University under Grant No. BAP 2001/02 for MR system, by Uludag University under Grant No. UAP(F)-2010/56, by The Scientific and Technological Research Council of Turkey under Grant No. TBAG-1771 for electrodeposition system, and by State Planning Organization/Turkey under Grant No. 2005K120170 for VSM system. The authors acknowledge Prof. Dr. Halil Guler for XRD measurements in Balikesir University/Turkey. They also thank Selcuk University/Turkey for EDX measurements and SEM micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Karpuz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpuz, A., Kockar, H. & Alper, M. Microstructure dependence of magnetic properties on electrochemically produced ternary CuCoNi alloys. J Mater Sci: Mater Electron 25, 4483–4488 (2014). https://doi.org/10.1007/s10854-014-2191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2191-9

Keywords

Navigation