Skip to main content
Log in

A model for longitudinal piezoelectric coefficient measurement of the aluminum nitride thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper proposes a new model for the longitudinal piezoelectric coefficient (LPC) measurement of the aluminum nitride (AlN) thin film on (100) Si substrate, the AlN thin film is fabricated by the direct-current magnetron sputtering and the piezoelectricity of the AlN thin film is measured by the piezoresponse force microscopy (PFM) in contact mode. In this model, the electric field distribution is taken into account, and the electrostriction displacement caused by the local field concentration is excluded from the measured displacement by the PFM. A LPC value of 4.22 ± 0.34 pm/V is obtained for the clamped AlN thin film by this model, and the deviation between this value and that measured under homogenous field condition is <5.7 %. Therefore, it is reasonable to apply our model to the piezoelectricity characterization of AlN thin films when using the PFM. Furthermore, piezoelectricity of other thin films could also be characterized using this model, which could simplify the measurement process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.V. Singh, S. Chandra, G. Bose, Thin Solid Films 519, 5846 (2011)

    Article  Google Scholar 

  2. K. Tsubouchi, N. Mikoshiba, IEEE Trans. Sonics Ultrason. 32, 634 (1985)

    Article  Google Scholar 

  3. T.T. Yen, H. Taku, K.W. Paul, P.P. Albert, L. Liwei, J. Micromech. Microeng. 21, 085037 (2011)

    Article  Google Scholar 

  4. J. Nathan, O.K. Rosemary, W. Finbarr, O.N. Mike, M. Alan, J. Micromech. Microeng. 23, 075014 (2013)

    Article  Google Scholar 

  5. F. Bénédic, M.B. Assouar, F. Mohasseb, O. Elmazria, P. Alnot, A. Gicquel, Diam. Relat. Mater. 13, 347 (2004)

    Article  Google Scholar 

  6. M. Benetti, D. Cannatà, F. Di Pietrantonio, E. Verona, A. Generosi, B. Paci, V. Rossi, Albertini. Thin Solid Films 497, 304 (2006)

    Article  Google Scholar 

  7. L. Chih-Ming, C. Yung-Yu, V.F. Valery, L. Wei-Cheng, R. Tommi, G.S. Debbie, P.P. Albert, J. Micromech. Microeng. 23, 025019 (2013)

    Article  Google Scholar 

  8. C.M. Yang, K. Uehara, S.K. Kim, S. Kameda, H. Nakase, K. Tsubouchi, IEEE Symp. Ultrason. 1, 170–173 (2003)

    Google Scholar 

  9. J. Weber, W.M. Albers, J. Tuppurainen, M. Link, R. Gabl, W. Wersing, M. Schreiter, Sensor. Actuat. A 128, 84 (2006)

    Article  Google Scholar 

  10. Y. Ventsislav, K. Ilia, J. Micromech. Microeng. 23, 043001 (2013)

    Article  Google Scholar 

  11. K. Tonisch, V. Cimalla, C. Foerster, H. Romanus, O. Ambacher, D. Dontsov, Sensor. Actuat. A 132, 658 (2006)

    Article  Google Scholar 

  12. S. Karmann, H.P.D. Schenk, U. Kaiser, A. Fissel, W. Richter, Mater. Sci. Eng. 50, 228 (1997)

    Article  Google Scholar 

  13. Y. Wu, C.H. Jia, W.F. Zhang, Diam. Relat. Mater. 25, 139 (2012)

    Article  Google Scholar 

  14. H. He, L. Huang, M. Xiao, Y. Fu, X. Shen, J. Zeng, J. Mater. Sci. Mater. Electron. 24, 4499 (2013)

    Article  Google Scholar 

  15. Z.P. Wang, A. Morimoto, T. Kawae, H. Ito, K. Masugata, Phys. Lett. A 375, 3007 (2011)

    Article  Google Scholar 

  16. X.H. Xu, H.S. Wu, C.J. Zhang, Z.H. Jin, Thin Solid Films 388, 62 (2001)

    Article  Google Scholar 

  17. C.M. Lueng, H.L.W. Chan, C. Surya, C.L. Choy, J. Appl. Phys. 88, 5360 (2000)

    Article  Google Scholar 

  18. B.J. Rodriguez, A. Gruverman, A.I. Kingon, R.J. Nemanich, J. Cryst. Growth 246, 252 (2002)

    Article  Google Scholar 

  19. V. Mortet, M. Nesladek, K. Haenen, A. Morel, M. D’Olieslaeger, M. Vanecek, Diam. Relat. Mater. 13, 1120 (2004)

    Article  Google Scholar 

  20. J. Hernando, J.L. Sanchez-Rojas, S. Gonzalez-Castilla, E. Iborra, A. Ababneh, U. Schmid, J. Appl. Phys. 104, 053502 (2008)

    Article  Google Scholar 

  21. M.E. Welland, D.P. Chu, P. Migliorato, Phys. Rev. B 60, 16198 (1999)

    Article  Google Scholar 

  22. J.D. Jackson, Classical Electrodynamics, 1st edn. (Wiley, New York, 1962), pp. 26–50

    Google Scholar 

  23. X. Song, R. Fu, H. He, Microelectron. Eng. 86, 2217 (2009)

    Article  Google Scholar 

  24. G. Chen, J. Liao, W. Hao, Fundamental of Crystal Physics, 2nd edn. (Science Press, Beijing, 2007), pp. 142–144

    Google Scholar 

  25. R. Yimnirun, P. Moses, R. Newnham, R. Meyer, J. Electroceram. 8, 87 (2002)

    Article  Google Scholar 

  26. F. Bernardini, V. Fiorentini, Appl. Phys. Lett. 80, 4145 (2002)

    Article  Google Scholar 

  27. A. Sanz-Hervas, M. Clement, E. Iborra, L. Vergara, J. Olivares, J. Sangrador, Appl. Phys. Lett. 88, 161915 (2006)

    Article  Google Scholar 

  28. D. Royer, V. Kmetik, Electron. Lett. 28, 1828 (1992)

    Article  Google Scholar 

  29. S. Hyunchang, T.S. Joon, J. Korean Phys. Soc. 56, 580 (2010)

    Article  Google Scholar 

  30. C.D. Joseph, C.P. Bryan, N. Biju, M. Ravi, L.P. Beth, J. Micromech. Microeng. 20, 025008 (2010)

    Article  Google Scholar 

  31. M.A. Dubois, P. Muralt, J. Appl. Phys. 89, 6389 (2001)

    Article  Google Scholar 

  32. F. Martin, P. Muralt, M.A. Dubois, A. Pezous, J. Vac. Sci. Technol. A 22, 361 (2004)

    Article  Google Scholar 

  33. M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, N. Kawahara, Appl. Phys. Lett. 93, 102903 (2008)

    Article  Google Scholar 

  34. I.D. Kim, Y. Avrahami, H.L. Tuller, Y.B. Park, M.J. Dicken, H.A. Atwater, Appl. Phys. Lett. 86, 192907 (2005)

    Article  Google Scholar 

  35. W. Zhihong, M. Jianmin, J. Phys. D Appl. Phys. 41, 035306 (2008)

    Article  Google Scholar 

  36. Z. Wang, G.K. Lau, W. Zhu, C. Chao, IEEE. Trans. Ultrason. Ferroelectr. Freq. Control 53, 15 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Natural Science Foundation of China (No. 11034007, 61102023) and the National High Technology Research and Development Program of China (No. 2012AA040503). The authors are grateful to the reviewers for the suggestion and revision of this paper. The authors are grateful to the reviewers for the suggestion and revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihui Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, X., Wu, Y., Wu, J. et al. A model for longitudinal piezoelectric coefficient measurement of the aluminum nitride thin films. J Mater Sci: Mater Electron 25, 2435–2442 (2014). https://doi.org/10.1007/s10854-014-1885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1885-3

Keywords

Navigation