Skip to main content
Log in

Synthesis, characterization and electrical properties of nanostructured LaAlO3 by sol–gel auto combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Semiconductive nanostructured LaAlO3 was synthesized by sol–gel auto combustion method using inorganic reagents as La (NO3)3·6H2O, Al (NO3)3·9H2O and glycine as a fuel. Structural characterization of prepared sample was characterized by X-ray diffraction technique (XRD), and Fourier transforms infrared spectroscopy (FTIR). The morphology of the particle was found by scanning electron microscopy while elemental composition by energy dispersive X-ray spectroscopy and transmission electron microscopy (TEM) was used to study the nanostructure of the material. XRD pattern reveals the formation of single phase orthorhombic structure without any other phase formation. The system LaAlO3 show porous morphology. Particle size obtained from TEM analysis was found to be ~40 nm. The FTIR spectra showed the characteristic of two strong absorption bands at 656 and 442 cm−1 corresponding to metal–oxygen bond vibrations for the perovskite structure compound. Superhydrophilic nature of LaAlO3 was investigated at room temperature by sessile drop technique. The electrical properties of the compound showed that LaAlO3 exhibits conducting behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.W. Berkstresser, A.J. Valentino, C.D. Brandle, J. Cryst. Growth 128, 684–688 (1993)

    Article  CAS  Google Scholar 

  2. G.Y. Sung, K.Y. Kang, S.C. Park, J. Am. Ceram. Soc. 74, 437–439 (1991)

    Article  CAS  Google Scholar 

  3. T.Y. Chen, K.Z. Fung, J. Alloys Compd. 368, 106–115 (2004)

    Article  CAS  Google Scholar 

  4. M. Nieminen, T. Sajavaara, E. Rauhala, M. Putkonen, L. Niisisto, J. Mater. Chem. 11, 2340–2345 (2001)

    Article  CAS  Google Scholar 

  5. T.L. Nguyen, M. Donkiya, S. Wang, H. Togawa, T. Hashimoto, Solid State Ionics 130, 229–241 (2000)

    Article  CAS  Google Scholar 

  6. R. Guo, D. Guo, Y. Chen, Z. Yang, Q. Yuan, Ceram. Int. 28, 699–704 (2002)

    Article  CAS  Google Scholar 

  7. R. Spinicci, P. Marini, S.D. Rossi, M. Faticanti, P. Porta, J. Mol. Catal. A: Chem. 176, 253–265 (2001)

    Article  CAS  Google Scholar 

  8. K. Vidyasagar, J. Gopal Krishnan, C.N.R. Rao, J. Solid State Chem. 58, 29–37 (1985)

    Article  CAS  Google Scholar 

  9. P. Peshev, V. Slavova, Mater. Res. Bull. 29, 255–261 (1994)

    Article  CAS  Google Scholar 

  10. B.C. Lux, R.D. Clark, A. Salazar, L.K. Sveum, M.A. Krebs, J. Am. Ceram. Soc. 76(10), 2669–2672 (1993)

    Article  CAS  Google Scholar 

  11. Y. Xu, G. Huang, H. Long, Ceram. Intern. 29(7), 837–840 (2003)

    Article  CAS  Google Scholar 

  12. J. Chandradass, K.H. Kim, J. Cryst. Growth 311, 3631–3635 (2009)

    Article  CAS  Google Scholar 

  13. S.M. Khetre, J. Mater. Sci.: Mater. Electron. 24, 1213–1219 (2013)

    Article  CAS  Google Scholar 

  14. E.V. Tsipis, V.V. Kharton, N.V. Vyshatko, J.R. Frade, F.M.B. Marques, Solid State Sci. 7, 257–267 (2005)

    Article  CAS  Google Scholar 

  15. L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L. Thomas, G.L. Exarhos, Mater. Lett. 10, 6–12 (1990)

    Article  CAS  Google Scholar 

  16. S. Tiwari, S. Singh, R. Singh, J. Electrochem. Soc. 143(5), 1505–1510 (1996)

    Article  CAS  Google Scholar 

  17. H. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Solid State Ionics 117, 277–281 (1999)

    Article  CAS  Google Scholar 

  18. S.R. Kulal, S.S. Khetre, P.N. Jagdale, V.M. Gurame, D.P. Waghmode, G.B. Kolekar, S.R. Sabale, S.R. Bamane, Mater. Lett. 84, 169–172 (2012)

    Article  CAS  Google Scholar 

  19. K.A. Khamkar, S.V. Bangale, S.R. Bamane, V.V. Dhapte, Der. Chemica. Sinica. 3(4), 891–895 (2012)

    CAS  Google Scholar 

  20. C. Hammond, Oxford University Press, Oxford, (1997)

  21. A. Cottrell, An Introduction to Metallurgy (Edward Arnold, London, 1967)

    Google Scholar 

  22. V. Singh, D. Naidu, R. Chakradhar, Y. Ratnakaram, J. Zhu, M. Soni, Phys. B 403, 3781–3785 (2008)

    Article  CAS  Google Scholar 

  23. A. Barabauskas, D. Jasaitis, A. Kareiva, Vib. Spectrosc. 28, 263–275 (2002)

    Article  Google Scholar 

  24. A.K. Adak, P. Pramanik, Mater. Lett. 30, 269–273 (1997)

    Article  CAS  Google Scholar 

  25. S.A. Mahadik, M.S. Kavale, S.K. Mukherjee, A.V. Rao, Appl. Surf. Sci. 257(2), 333–339 (2010)

    Article  CAS  Google Scholar 

  26. S.S. Latthe, D.Y. Nadargi, A.V. Rao, J. Appl. Surf. Sci. 255, 3600 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashmiri A. Khamkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khamkar, K.A., Jagadale, P.N., Kulal, S.R. et al. Synthesis, characterization and electrical properties of nanostructured LaAlO3 by sol–gel auto combustion method. J Mater Sci: Mater Electron 24, 4482–4487 (2013). https://doi.org/10.1007/s10854-013-1428-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1428-3

Keywords

Navigation