Skip to main content
Log in

Controlled deposition of new organic ultrathin film as a gate dielectric layer for advanced flexible capacitor devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This letter describes a new organic (1-bromoadamantane) ultrathin film as gate dielectric, which was successfully deposited by sol–gel spin-coating process on a flexible polyimide substrate at room temperature. The metal–insulator-metal (MIM) device with organic (1-bromoadamantane) ultrathin (10 nm) film as gate dielectric layer operated at gate voltage of 5.0 V, showing a low leakage current density (5.63 × 10−10 A cm−2 at 5 V) and good capacitance (2.01 fF μm−2 at 1 MHz). The chemical structure of the 1-bromoadamantane layer was investigated by Fourier transform infrared spectrometer. The excellent leakage current density and better capacitance, probably due to the presence of polar, non-polar, low-polar groups, and bromine atoms in ultrathin film. Practical properties of the film in MIM capacitor such as dielectric constant as well as bending result of leakage current density and breakdown voltage have been better related to such fundamental adhesion nature over flexible substrate. This permits estimation of the properties of new dielectric in thin film form and short lists of the best materials for low loss and good capacitance flexible capacitors could be drawn up in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Sun, G. Qin, H. Huang, H. Zhou, N. Behdad, W. Zhou, Z. Ma, Appl. Phys. Lett. 96, 013509 (2010)

    Article  Google Scholar 

  2. A. Facchetti, M.-H. Yoon, T.J. Marks, Gate dielectrics for organic field-effect transistors: New opportunities for. Org. Electron. 17, 1705 (2005)

    CAS  Google Scholar 

  3. D. Shamiryan, T. Abell, F. Iacopi, K. Maex, Mater. Today 7(1), 34 (2004)

    CAS  Google Scholar 

  4. The International Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Francisco, CA, (2005)

  5. Y. Xu, D.W. Zheng, Y. Tsai, K.N. Tu, B. Zhao, Q.-Z. Liu, M. Brongo, C.W. Ong, C.L. Choy, G.T.T. Sheng, C.H. Tung, J. Electron. Mater. 30, 309 (2001)

    Article  CAS  Google Scholar 

  6. Z. Zhang, H. Deng, P. Yang, J. Mater. Sci. Mater. Electron. 22, 488 (2011)

    Article  CAS  Google Scholar 

  7. C.-C. Wu, Y.-J. Tsai, P.-L. Liu, Y.-L. Yang, F.-H. Ko, J. Mater. Sci. : Mater. Electron. 10.1007/s10854-012-0773-y (2012)

  8. S.-Y. Cha, H.-J. Kim, D.-J. Choi, J. Mater. Sci. 45, 5223 (2010)

    Article  CAS  Google Scholar 

  9. G. Luka, T.A. Krajewski, B.S. Witkowski, G. Wisz, I.S. Virt, E. Guziewicz, M. Godlewski, J. Mater. Sci. Mater. Electron. 22, 1810 (2011)

    Article  CAS  Google Scholar 

  10. Z. Li, A. Rahtu, R.G. Gordon, J. Electrochem. Soc. 153(11), C787 (2006)

    Article  CAS  Google Scholar 

  11. J.B. Woods, D.B. Beach, C.L. Nygren, Z.-L. Xue, Chem. Vap. Depos. 11, 289 (2005)

    Article  CAS  Google Scholar 

  12. J.N. Tiwari, J.S. Meena, C.-S. Wu, R.N. Tiwari, M.-C. Chu, F.-C. Chang, F.-H. Ko, ChemSusChem 3, 1051 (2010)

    Article  CAS  Google Scholar 

  13. S.W. Kang, W.K. Kim, S.W. Rhee, J. Mater. Sci. 42, 652 (2007)

    Article  CAS  Google Scholar 

  14. H.-C. You, T.-H. Hsu, F.-H. Ko, J.-W. Huang, T.-F. Lei, IEEE Electron Device Lett. 27, 644 (2006)

    Article  CAS  Google Scholar 

  15. J.S. Meena, M.-C. Chu, S.-W. Kuo, F.-C. Chang, F.-H. Ko, Phys. Chem. Chem. Phys. 12, 2582 (2010)

    Article  Google Scholar 

  16. L.A. Fraczyk, Y. Huang, Spectrochimica Acta Part A 57, 1061 (2001)

    Article  Google Scholar 

  17. N. Polfer, B.G. Sartakov, J. Oomens, Chem. Phys. Lett. 400, 201 (2004)

    Article  CAS  Google Scholar 

  18. J.O. Jensen, Spectrochim. Acta Part A 60, 1895 (2004)

    Article  Google Scholar 

  19. L.A. Fraczyk, Y. Huang, Spectrochim. Acta Part A 57, 1061 (2001)

    Article  Google Scholar 

  20. O. Pirali, M. Vervloet, J.E. Dahl, R.M.K. Carlson, A.G.G.M. Tielens, J. Oomens, Astrophys. J. 661, 919 (2007)

    Article  CAS  Google Scholar 

  21. C.P. Smyth, Dielectric Behavior and Structure-Dielectric Constant and Loss Dipole Moment and Molecular Structure (McGraw Hill, New York, 1955)

    Google Scholar 

  22. T. Shirafuji, Y. Nishimura, K. Tachibana, H. Ishii, Thin Solid Films 518, 993 (2009)

    Article  CAS  Google Scholar 

  23. D.-H. Kim, S.-H. Choi, N.G. Cho, Y.E. Chang, H.-G. Kim, J.-M. Hong, I.-D. Kim, Electrochem. Solid-State Lett. 12(8), H296 (2009)

    Article  CAS  Google Scholar 

  24. M.-H. Yoon, H. Yan, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. 127, 10388 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Nano Device Laboratories for their support in device fabrication and to the Ministry of Education of Taiwan for financially supporting this research under Aiming for the Top University Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Po-Tsun Liu or Fu-Hsiang Ko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meena, J.S., Chu, MC., Singh, R. et al. Controlled deposition of new organic ultrathin film as a gate dielectric layer for advanced flexible capacitor devices. J Mater Sci: Mater Electron 24, 1807–1812 (2013). https://doi.org/10.1007/s10854-012-1016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-1016-y

Keywords

Navigation