Skip to main content
Log in

Structure and electrical properties of the Ho2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ho2O3 (0–0.7 wt%)-doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 (BNKT18) lead-free piezoelectric ceramics were synthesized by a conventional solid-state reaction method. The effects of Ho2O3 on the microstructure and electrical properties were investigated. X-ray diffraction data shows that Ho2O3 in an amount of 0.1–0.7 wt% can diffuse into the lattice of the BNKT18 ceramics and form the pure perovskite phase. Scanning electron microscope (SEM) images indicate that the grain sizes of BNKT18 ceramics decrease with the increase of Ho2O3 content; in addition, the modified ceramics have the clear grain boundary and a uniformly distributed grain size. At room temperature, the electrical properties of the BNKT18 ceramics have been improved with the addition of Ho2O3, and the BNKT18 ceramics doped with 0.3wt.% Ho2O3 have the highest piezoelectric constant (d 33 = 137 pC/N), the highest remnant polarization (P r = 26.9 μC/cm2), the higher relative dielectric constant (ε r = 980) and lower dissipation factor (tanδ = 0.046) at a frequency of 10 kHz. The BNKT18 ceramics doped with 0.1 wt% Ho2O3 have the highest planar coupling factor (k p = 0.2426).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Rödel, W. Jo, K. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009)

    Article  Google Scholar 

  2. O. Elkechai, M. Manier, J.P. Mercurio, Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 (NBT-KBT) system: a structural and electrical study. Phys. Status Solidi A 157, 499 (1996)

    Article  Google Scholar 

  3. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. Pt. 1 38, 5564 (1999)

    Article  CAS  Google Scholar 

  4. T. Takenaka, H. Nagata, Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 25, 2693 (2005)

    Article  CAS  Google Scholar 

  5. Z.P. Yang, B. Liu, L.L. Wei, Y.T. Hou, Structure and electrical properties of (1-x) Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary. Mater. Res. Bull. 43, 81 (2008)

    Article  CAS  Google Scholar 

  6. P. Fu, Z.J. Xu, R.Q. Chu, W. Li, G.Z. Zang, J.G. Hao, Piezoelectric, ferroelectric and dielectric properties of Nd2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Mater. Sci. Eng. B 167, 161 (2010)

    Article  CAS  Google Scholar 

  7. D.M. Lin, K.W. Kwok, H.W.L. Chan, Dielectric and piezoelectric properties of (K0.5Na0.5)NbO3-Ba(Zr0.05Ti0.95)O3 lead-free ceramics. Appl. Phys. Lett. 91, 143513 (2007)

    Article  Google Scholar 

  8. G.F. Fan, W.Z. Lu, X.H. Wang, F. Liang, Morphotropic phase boundary and piezoelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-KNbO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 91, 202908 (2007)

    Article  Google Scholar 

  9. H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, Z.B. Pei, An approach to further improve piezoelectric properties of (K0.5Na0.5)NbO3-based lead-free ceramics. Appl. Phys. Lett. 91, 202907 (2007)

    Article  Google Scholar 

  10. T. Wada, A. Fukui, Y. Matsuo, Preparation of (K1/2Bi1/2)TiO3 ceramics by polymerized complex method and their properties. Jpn. J. Appl. Phys. Pt. 1 41, 7025 (2002)

    Article  CAS  Google Scholar 

  11. Y.J. Zhang, R.Q. Chu, Z.J. Xu, J.G. Hao, Q. Chen, P. Fu, W. Li, G.R. Li, Q.R. Yin, Piezoelectric and dielectric properties of Sm2O3-doped 0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3 ceramics. J. Alloys Comp. 502, 341 (2010)

    Article  CAS  Google Scholar 

  12. Z.P. Yang, Y.T. Hou, B. Liu, L.L. Wei, Structure and electrical properties of Nd2O3-doped 0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3 ceramics. Ceram. Inter. 35, 1423 (2009)

    Article  CAS  Google Scholar 

  13. Y.W. Liao, D.Q. Xiao, D.M. Lin, The effects of CeO2-doping on piezoelectric and dielectric properties of Bi0.5(Na1−xy K x Li y )0.5TiO3 piezoelectric ceramics. Mater. Sci. Eng. B 133, 172 (2006)

    Article  CAS  Google Scholar 

  14. Y.M. Li, W. Chen, Q. Xu, J. Zhou, Y. Wang, H.J. Sun, Piezoelectric and dielectric properties of CeO2-doped Bi0.5Na0.44K0.06TiO3 lead-free ceramics. Ceram. Int. 33, 95 (2007)

    Article  CAS  Google Scholar 

  15. P. Fu, Z.J. Xu, R.Q. Chu, W. Li, Q. Xie, G.Z. Zang, Effects of Eu2O3 on the structure and electrical properties of 0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics. Curr. Appl. Phys. 11, 822 (2011)

    Article  Google Scholar 

  16. S. Kim, M.C. Jun, S.C. Hwang, Preparation of undoped lead titanate ceramics via sol-gel processing. J. Am. Ceram. Soc. 82, 289 (1999)

    Article  CAS  Google Scholar 

  17. R.G. Sabat, B.K. Mukherjee, W. Ren, G.M. Yang, Temperature dependence of the complete material coefficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics. J. Appl. Phys. 101, 064111 (2007)

    Article  Google Scholar 

  18. Z.W. Chen, J.Q. Hu, Piezoelectric and dielectric properties of (Bi0.5Na0.5)0.94Ba0.06TiO3-Ba(Zr0.04Ti0.96)O3 lead-free piezoelectric ceramics. Ceram. Int. 35, 111 (2009)

    Article  CAS  Google Scholar 

  19. C.R. Zhou, X.Y. Liu, W.Z. Li, C.L. Yuan, G.H. Chen, Structure and electrical properties of Bi0.5(Na, K)0.5TiO3-BiGaO3 lead-free piezoelectric ceramics. Curr. Appl. Phys. 10, 93 (2010)

    Article  Google Scholar 

  20. C. Kittel, Theory of antiferroelectric crystals. Phys. Rev. 82, 729 (1951)

    Article  CAS  Google Scholar 

  21. C.G. Xu, D.M. Lin, K.W. Kwok, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics. Solid State Sci. 10, 934 (2008)

    Article  CAS  Google Scholar 

  22. K. Sakata, T. Takenaka, Y. Naitou, Phase relations, dielectric and piezoelectric properties of ceramics in the system (Bi0.5Na0.5)TiO3-PbTiO3. Ferroelectrics 131, 219 (1992)

    Article  CAS  Google Scholar 

  23. Y.W. Liao, D.Q. Xiao, D.M. Lin, J.G. Zhu, P. Yu, L. Wu, X.P. Wang, Synthesis and properties of Bi0.5(Na1-x-yKxAgy)0.5TiO3 lead-free piezoelectric ceramics. Ceram. Int. 33, 1445 (2007)

    Article  CAS  Google Scholar 

  24. H. Ali, W.A. Chang, J.S. Lee, U. Aman, W.K. Ill, Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics. Sens. Actuators A 158, 84 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ph. D. Programs Foundation of Shandong Province of China (No. BS2010CL010) and the Natural Science Foundation of Shandong Province of China (No. ZR2011EMQ015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, P., Xu, Z., Chu, R. et al. Structure and electrical properties of the Ho2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics. J Mater Sci: Mater Electron 23, 2167–2172 (2012). https://doi.org/10.1007/s10854-012-0734-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0734-5

Keywords

Navigation