Skip to main content

Advertisement

Log in

The formation of quantum dot structures in 30-pair InGaN/GaN multiple quantum wells after proper thermal annealing treatment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study systematically investigates the relation between strain energy and quantum dot (QD) formation for 30- pair InGaN/GaN multiple quantum wells (QW) by means of atomic force microscopy and high-resolution transmission electron microscopy. The results show that a higher number of quantum wells induce a higher strain energy and higher density of V-shaped defects, which increases the number of non-radiative centers. However, after thermal annealing, the strain energy accumulated from stacking faults is released and leads to the formation of a QDs structure. The strain energy around the quantum dot structure was calculated using by the NCEM Phase Extensions to the Digital Micrograph. The zone of higher strain energy was observed, which proves that the strain energy is the driving force for the formation of quantum dot structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Narukawa, Y. Kawakami, M. funato, S. Fujita, S. Kawakami, Appl. Phys. Lett. 70, 981 (1997)

    Article  CAS  Google Scholar 

  2. M.D. McCluskey, L.T. Romano, B.S. Krusor, D.P. Bour, N.M. Johnson, S. Brennan, Appl. Phys. Lett. 72, 1730 (1998)

    Article  CAS  Google Scholar 

  3. Y.S. Lin, K.J. Ma, C. Hsu, S.W. Feng, Y.C. Cheng, C.C. Liao, C.C. Yang, C.C. Chuo, C.M. Lee, J.I. Chyi, Appl. Phys. Lett. 77, 2988 (2000)

    Article  CAS  Google Scholar 

  4. T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, M. Ikeda, Appl. Phys. Lett. 76, 3421 (2000)

    Article  CAS  Google Scholar 

  5. Y.H. Cho, G.H. Gainer, A.J. Fischer, J.J. Song, S. Keller, U.K. Mishra, S.P. DenBarrs, Appl. Phys. Lett. 73, 1370 (1998)

    Article  CAS  Google Scholar 

  6. P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugano, Y. Aoyagi, Appl. Phys. Lett. 75, 2241 (1999)

    Article  CAS  Google Scholar 

  7. S.F. Chichibu, A.C. Abare, M.S. Minsky, S. Keller, S.B. Fleischer, J.E. Bowers, E. Hu, U.K. Mishra, L.A. Coldren, S.P. DenBaars, T. Sota, Appl. Phys. Lett. 73, 2006 (1998)

    Article  CAS  Google Scholar 

  8. C.K. Choi, Y.M. Kwon, B.D. Little, G.H. Gainer, J.J. Song, Y.C. Chang, Phys. Rev. B 64, 245339 (2001)

    Article  Google Scholar 

  9. R. Langer, J. Simon, V. Oritz, N.T. Pelekanos, A. Barski, R. André, M. Godlewski, Appl. Phys. Lett. 74, 3827 (1999)

    Article  CAS  Google Scholar 

  10. P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nature 406, 865 (2000)

    Article  CAS  Google Scholar 

  11. I.H. Ho, G.B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996)

    Article  CAS  Google Scholar 

  12. S. Chichibu, T. Azuhata, T. Soda, S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996)

    Article  CAS  Google Scholar 

  13. S. Chichibu, T. Azuhata, T. Sota, S. Nakamura, Appl. Phys. Lett. 70, 2822 (1997)

    Article  CAS  Google Scholar 

  14. M.S. Minsky, S.B. Fleischer, A.C. Abare, J.E. Bowers, E.L. Hu, S. Keller, S.P. Denbaars, Appl. Phys. Lett. 72, 1066 (1998)

    Article  CAS  Google Scholar 

  15. J. Bai, T. Wang, S. Sakai, J. Appl. Phys. 88, 4729 (2000)

    Article  CAS  Google Scholar 

  16. T. Wang, D. Nakagawa, M. Lachab, T. Sugahara, S. Sakai, Appl. Phys. Lett. 74, 3128 (1999)

    Article  CAS  Google Scholar 

  17. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999)

    Google Scholar 

  18. T.M. Hsu, Y.S. Lan, W.H. Chang, N.T. Yeh, J.I. Chyi, Appl. Phys. Lett. 76, 691 (2000)

    Article  CAS  Google Scholar 

  19. W.H. Lee, K.S. Kim, G.M. Yang, C.H. Hong, K.Y. Lim, E.K. Suh, H.J. Lee, H.K. Cho, J.Y. Lee, J. Korean Phys. Soc. 39, 136 (2001)

    CAS  Google Scholar 

  20. L.T. Romano, M.D. McCluskey, B.S. Krusor, D.P. Bour, C. Chua, S. Brennan, K.M. Yu, J. Crystal Growth 189/190, 33 (1998)

    Article  CAS  Google Scholar 

  21. C.C. Chuo, C.M. Lee, T.E. Nee, J.I. Chyi, Appl. Phys. Lett. 76, 3902 (2000)

    Article  CAS  Google Scholar 

  22. Y.S. Lin, K.J. Ma, C. Hsu, Y.Y. Chung, C.W. Liu, S.W. Feng, Y.C. Cheng, M.H. Mao, C.C. Yang, H.W. Chuang, C.T. Kuo, J.S. Tsang, T.E. Weirich, Appl. Phys. Lett. 80, 2571 (2002)

    Article  CAS  Google Scholar 

  23. O. Ambacher, H. Angerer, R. Dimitrov, W. Rieger, M. Stutzmann, G. Dollinger, A. Bergmaier, Hydrogen in gallium nitride growth by MOCVD. Phys. Status Solidi A 159(1), 105–112 (1997)

    Article  CAS  Google Scholar 

  24. L. Vegard, H. Dale, Untersuchungen über Mischkristalle und Legierungen. Z. Kristallogr. 67, 148–162 (1928)

    CAS  Google Scholar 

  25. A. Strecker, U. Salzberger, J. Mayer, Specimen preparation for transmission electron microscopy: reliable method for cross-sections and brittle materials. Prakt. Metallogr. 30, 482–495 (1993)

    CAS  Google Scholar 

  26. F. Hofer, P. Warbichler, Elemental mapping using energy filtered imaging, in Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS ATLAS, ed. by C.C. Ahn (Wiley-VCH Verlag, Weinheim, 2004), pp. 159–222

    Google Scholar 

  27. M.J. Hytch, Analysis of variations in structure from high resolution electron microscope images by combining real space and fourier space information. Microsc. Microanal. Microstruct. 8, 41–57 (1997)

    Article  CAS  Google Scholar 

  28. Y.Y. Chung, Y.S. Lin, S.W. Feng, Y.C. Cheng, E.C. Lin, C.C. Yang, K.J. Ma, C. Hsu, H.W. Chuang, C.T. Kuo, J.S. Tsang, Quantum-well-width dependencies of post-growth thermal annealing effects of InGaN/GaN quantum wells. J. Appl. Phys. 93, 9693–9696 (2003)

    Article  CAS  Google Scholar 

  29. T.M. Smeeton, M.J. Kappers, J.S. Barnard, M.E. Vickers, C.J. Humphreys, Appl. Phys. Lett. 83(26), 5419–5421 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Council, Republic of China, under grants NSC 96-2623-7-214-002-NU and NSC96-2221-E-214-019-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Sheng Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YS., Kuo, HH. & Feng, SW. The formation of quantum dot structures in 30-pair InGaN/GaN multiple quantum wells after proper thermal annealing treatment. J Mater Sci: Mater Electron 23, 1830–1834 (2012). https://doi.org/10.1007/s10854-012-0670-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0670-4

Keywords

Navigation