Skip to main content
Log in

Formation and behavior of Kirkendall voids within intermetallic layers of solder joints

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The sub-micron void called “Kirkendall void” has been widely observed within intermetallic compound (IMC) layers in solder joints of semiconductor package interconnections that include both the first level interconnection for a silicon die to a substrate and the second level interconnection for the substrate to a PCB board. Based on many researches on Kirkendall void through a variety of variables, it has been demonstrated as a critical reliability risk within various binary and ternary IMC layers of solder joints in electronic packaging industry. Even, it is more crucial for fine pitch and high complexity in chip-scale electronic packaging. Hence, it is necessarily demanding to review the dependency and influence of critical variables for Kirkendall void formation and behavior in the basis of solid and solid–liquid state interdiffusion process, time and temperature-dependent kinetic process, and morphology and microstructure change of IMCs. Specifically, we reviewed the initial formation, growth and behaviors of Kirkendall void in: (1) short and long-term interfacial reaction by aging in different time and temperatures (2) multiple reflows with different peak temperature (3) annealing after reflow and (4) electromigration, within IMCs of solder joints. Probably, this study may serve as conceptually helpful references to the overall understanding of formation, growth and behavior of Kirkendall void in interfacial reaction of solder joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C.Y. Liu, K.N. Tu, T.T. Sheng, C.H. Tung, D.R. Frear, P. Elenius, J. Appl. Phys. 87, 750 (2000)

    Article  CAS  Google Scholar 

  2. P.S. Teo, Y.-W. Huang, C.H. Tung, M.R. Marks, T.B. Lim, 50th Electronic Components and Technology Conference, Las Vegas, NV, USA, p. 33 (2000)

  3. K.N. Tu, K. Zeng, Mater. Sci. Eng. R 34, 1 (2001)

    Article  Google Scholar 

  4. K. Zeng, K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002)

    Article  Google Scholar 

  5. E.O. Kirkendall, Trans. AIME 147, 104 (1942)

    Google Scholar 

  6. A.D. Smigelskas, E.O. Kirkendall, Trans. AIME 171, 130 (1947)

    Google Scholar 

  7. F. Seitz, Physical Rev. 74, 1513 (1948)

    Article  CAS  Google Scholar 

  8. F.D. Fischer, J. Svoboda, Scr. Mater. 58, 93 (2008)

    Article  CAS  Google Scholar 

  9. K. Weinberg, T. Bohme, IEEE Trans. Components Packag. Technol. 32, 684 (2009)

    Article  CAS  Google Scholar 

  10. K. Weinberg, T. Böhme, W.H. Müller, Comput. Mater. Sci. 45, 827 (2009)

    Article  CAS  Google Scholar 

  11. W. Yang, R. Messler, L. Felton, J. Electron. Mater. 23, 765 (1994)

    Article  CAS  Google Scholar 

  12. K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, K.N. Tu, J. Appl. Phys. 97, 024508 (2005)

    Article  Google Scholar 

  13. T.-C. Chiu, K. Zeng, R. Stierman, D. Edwards, K. Ano, 54th Electronic Components and Technology Conference, Las Vegas, Nevada, USA, vol. 2, p. 1256 (2004)

  14. M. Date, T. Shoji, M. Fujiyoshi, K. Sato, K.N. Tu, 54th Electronic Components and Technology Conference, vol. 1, p. 668 (2004)

  15. S. Ahat, M. Sheng, L. Luo, J. Electron. Mater. 30, 1317 (2001)

    Article  CAS  Google Scholar 

  16. D.R. Frear, F.M. Hosking, P.T. Vianco, 4th Electronic Materials and Processing Congress Montreal, Quebec, Canada, p. 229 (1991)

  17. K.C. Hung, Y.C. Chan, C.W. Tang, H.C. Ong, J. Mater. Res. 15, 2534 (2000)

    Article  CAS  Google Scholar 

  18. J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, P. Thompson, J. Appl. Phys. 85, 8456 (1999)

    Article  CAS  Google Scholar 

  19. P.G. Kim, J.W. Jang, T.Y. Lee, K.N. Tu, J. Appl. Phys. 86, 6746 (1999)

    Article  CAS  Google Scholar 

  20. R.J.K. Wassink, Soldering in Electronics. Electrochemical Publications Limited (Isle of Man, British Isle, 1989)

    Google Scholar 

  21. M. Li, F. Zhang, W.T. Chen et al., J. Mater. Res. 17, 1612 (2002)

    Article  CAS  Google Scholar 

  22. K. Zeng, V. Vuorinen, J.K. Kivilahti, 51st Electronic Components and Technology Conference, Orlando, FL, USA, p. 693 (2001)

  23. K.J. Zeng, V. Vuorinen, J.K. Kivilahti, IEEE Trans. Electron. Packag. Manuf. 25, 162 (2002)

    Article  CAS  Google Scholar 

  24. K.J. Ronka, F.J.J. van Loo, J.K. Kivilahti, Scr. Mater. 37, 1575 (1997)

    Article  CAS  Google Scholar 

  25. F.J.J. van Loo, J.A. van Beek, G.F. Bastin, R. Metselaar, Symposium on Diffusion in Solids: Recent Developments, Ditroit, MI, USA, p. 231 (1985)

  26. K. Zeng, J. Kivilahti, J. Electron. Mater. 30, 35 (2001)

    Article  CAS  Google Scholar 

  27. K.N. Tu, R.D. Thompson, Acta Metall. 30, 947 (1982)

    Article  CAS  Google Scholar 

  28. T.Y. Lee, W.J. Choi, K.N. Tu et al., J. Mater. Res. 17, 291 (2002)

    Article  CAS  Google Scholar 

  29. K. Tu, F. Ku, T. Lee, J. Electron. Mater. 30, 1129 (2001)

    Article  CAS  Google Scholar 

  30. K.N. Tu, T.Y. Lee, J.W. Jang et al., J. Appl. Phys. 89, 4843 (2001)

    Article  CAS  Google Scholar 

  31. L. Xu, J.H.L. Pang, 56th Electronic Components and Technology Conference, San Diego, CA, USA, p. 275 (2006)

  32. F. Gao, H. Nishikawa, T. Takemoto, J. Electron. Mater. 37, 45 (2008)

    Article  CAS  Google Scholar 

  33. X. Lin, L. Luo, J. Electron. Mater. 37, 307 (2008)

    Article  CAS  Google Scholar 

  34. C.K. Hu, H.B. Huntington, G.R. Gruzalski, Phys. Rev. B 28, 579 (1983)

    Article  CAS  Google Scholar 

  35. H.K. Kim, K.N. Tu, Phys. Rev. B 53, 16027 (1996)

    Article  CAS  Google Scholar 

  36. Z. Mei, A. Sunwoo, J. Morris, Metallurg Mater. Trans. A 23, 857 (1992)

    Article  Google Scholar 

  37. H.K. Kim, H.K. Liou, K.N. Tu, Appl. Phys. Lett. 66, 2337 (1995)

    Article  CAS  Google Scholar 

  38. C.Y. Liu, K.N. Tu, J. Mater. Res. 13, 37 (1998)

    Article  CAS  Google Scholar 

  39. Y.-C. Hsu, T.-L. Shao, C.-J. Yang, C. Chen, J. Electron. Mater. 32, 1222 (2003)

    Article  CAS  Google Scholar 

  40. J.W. Nah, F. Ren, K.W. Paik, K.N. Tu, J. Mater. Res. 21, 698 (2005)

    Article  Google Scholar 

  41. K.N. Tu, Phys. Rev. B 45, 1409 (1992)

    Article  Google Scholar 

  42. M. Ding, H. Matsuhashi, G. Wang, P. S. Ho, 54th Electronic Components and Technology Conference, Las Vegas, Nevada, USA, vol. 1, p. 968 (2004)

  43. Y.C. Hu, Y.H. Lin, C.R. Kao, K.N. Tu, J. Mater. Res. 18, 2544 (2003)

    Article  CAS  Google Scholar 

  44. J.D. Wu, P.J. Zheng, C.W. Lee, S.C. Hung, J.J. Lee, 41st Annual Reliability Physics Symposium Proceedings, p. 132 (2003)

  45. A.S. Nowick, J.J. Burton, Diffusion in Solids—Recent Developments (Academic, New York), 1975)

    Google Scholar 

  46. H. Gan, K.N. Tu, J. Appl. Phys. 97, 063514 (2005)

    Article  Google Scholar 

  47. M. Ding, G. Wang, B. Chao, P.S. Ho, P. Su, T. Uehling, J. Appl. Phys. 99, 094906 (2006)

    Article  Google Scholar 

  48. S. Choi, J.P. Lucas, K.N. Subramanian, T.R. Bieler, J. Mater. Sci. Mater. Electron. 11, 497 (2000)

    Article  CAS  Google Scholar 

  49. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, New York, 1981)

    Google Scholar 

  50. R.E. Reed-Hill, Physical Metallurgical Principles (Van Nostrand Company, New York, 1973)

    Google Scholar 

  51. F. Ren, J.W. Nah, J.O. Suh, et al., Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, p. 66 (2005)

Download references

Acknowledgments

This work was supported by Seoul R&BD Program (No. 10920) and by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science, and Technology (MEST) of Korean government in 2010 (No. K20902001448-10E0100-03010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Doosoo Kim or James Jungho Pak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D., Chang, Jh., Park, J. et al. Formation and behavior of Kirkendall voids within intermetallic layers of solder joints. J Mater Sci: Mater Electron 22, 703–716 (2011). https://doi.org/10.1007/s10854-011-0357-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0357-2

Keywords

Navigation