Skip to main content
Log in

Raman spectroscopy and AC conductivity of polyaniline montmorillonite (PANI–MMT) nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of polyaniline/montmorillonite clay (PANI–MMT) nanocomposites were synthesised by in situ polymerisation of aniline in acidic medium in the presence of varying amounts (from 1 to 30 wt%) of MMT and a substoichiometric amount of ammonium persulfate (APS). For a preferred molar ratio of monomer to oxidant of 2:1, the aniline was polymerised and largely incorporated into the MMT. The PANI–MMT nanocomposites were characterised and compared by wide-angle powder X-ray diffraction and UV–Vis spectroscopy. Raman spectroscopy was used to investigate the interaction between clay layers and the intercalated polymer chains. Room temperature AC conductivity was measured in the frequency range 30 Hz to 1 MHz. Pure PANI and all the composites exhibited a low frequency region of frequency independent AC conductivity followed by a high frequency dispersive region where the AC conductivity obeyed a fractional power law of frequency dependence. The fractional exponent n for all the nanocomposites is significantly high as compared to that of pure PANI; n = 0.9 for all the composites whereas for pure PANI n = 0.2. In pristine PANI the onset of the dispersive region ω c is at a much higher frequency (at 300 kHz) as compared to the nanocomposites in which ω c is about 10 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.T. Lim, Y.H. Hyun, H.J. Choi, M.S. Jhon, Chem. Mater. 14, 1839–1844 (2002)

    Article  CAS  Google Scholar 

  2. Z. Ding, J.T. Kloprogge, R.L. Frost, G.Q. Lu, H.Y. Zhu, J. Porous. Mater. 8, 273–293 (2001)

    Article  CAS  Google Scholar 

  3. A.K. Jonscher, Nature (Lond.) 267, 673 (1977)

    Article  CAS  Google Scholar 

  4. B.H. Kim, J.H. Jung, S.H. Hong, J. Joo, Macromolecules 35, 1419 (2002)

    Article  CAS  Google Scholar 

  5. B.H. Kim, J.H. Hong, J.W. Kim, H.J. Choi, J. Joo, Curr. Appl. Phys. 1, 115 (2001)

    Google Scholar 

  6. D.C. Lee, L.W. Jang, J. Appl. Polym. Sci. 61, 1117 (1996)

    Article  CAS  Google Scholar 

  7. G.M. do Nascimento, V.R.L. Constantino, R. Landers, M.L.A. Temperini, Macromolecules 37, 9373–9385 (2004)

    Article  CAS  Google Scholar 

  8. G.M. do Nascimento, V.R.L. Constantino, R. Landers, M.L.A. Temperini, Polymer 47, 6131–6139 (2006)

    Article  CAS  Google Scholar 

  9. G.M. do Nascimento, M.L.A. Temperini, Eur. Polym. J. 44, 3501–3511 (2008)

    Article  CAS  Google Scholar 

  10. G.M. do Nascimento, C.H.B. Silva, C.M.S. Izumi, M.L.A. Temperini, Spectrochimica Acta Part A 71, 869–875 (2008)

    Article  Google Scholar 

  11. F.F. Fei, J.C. Hyoung, J. Jinsoo, J. Nanosci. Nanotechnol. 8, 1559–1581 (2008)

    Article  Google Scholar 

  12. Q.Y. Soundararajah, B.S.B. Karunaratne, R.M.G. Rajapakse, Mater. Chem. Phys. 113, 850–855 (2009)

    Article  CAS  Google Scholar 

  13. V.L. Reena, J.D. Sudha, C. Pavithran, J. Appli. Polym. Sci. 113, 4066–4076 (2009)

    Article  CAS  Google Scholar 

  14. D.H. Song, H.M. Lee, H.J. Choi, J. Nanosci. Nanotechnol. 9, 1501–1504 (2009)

    Article  CAS  Google Scholar 

  15. F. Sun, Y. Pan, J. Wang, Z. Wang, C. Hu, Q. Dong, Polym. Compos. 31, 163–172 (2010)

    CAS  Google Scholar 

  16. D.M.M. Krishantha, R.M.G. Rajapakse, D.T.B. Tennakoon, H.V.R. Dias, Ionics 12, 287–294 (2006)

    Article  CAS  Google Scholar 

  17. A.B. Kaiser, Rep. Prog. Phys. 64, 1 (2001)

    Article  CAS  Google Scholar 

  18. A.B. Kaiser, Adv. Mater. 13, 927–941 (2001)

    Article  CAS  Google Scholar 

  19. N. Boutaleb, A. Benyoucef, H.J. Salavagione, M. Belbachir, E. Morallón, Eur. Polym. J. 42, 733–739 (2006)

    Article  CAS  Google Scholar 

  20. I. Bekri-Abbes, E. Srasra, React. Funct. Polym. 70, 11–18 (2010)

    Article  CAS  Google Scholar 

  21. A. Shakoor, T. Z. Rizvi, Poly. Sci. Ser. A Polym. Phys. 52, 55–59 (2010)

    Article  Google Scholar 

  22. S. Yoshimoto, F. Ohashi, T. Kameyama, Polym. Phys. 43, 2705–2714 (2005)

    Article  CAS  Google Scholar 

  23. S. Yoshimoto, F. Ohashi, T. Kameyama, Macromol. Rapid Commun. 25, 1687–1690 (2004)

    Article  CAS  Google Scholar 

  24. A. Shakoor, P.J.S. Foot, T.Z. Rizvi, J. Polym. Polym. Comp. 17, 347–352 (2009)

    Google Scholar 

  25. J. Dyre, J. Appl. Phys. 64, 2456 (1988)

    Article  Google Scholar 

  26. A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectrics Press, London, 1983)

    Google Scholar 

  27. E. Singh, A.K. Narula, R.P. Tandon, A. Mansingh, S. Chandra, J. Appl. Phys. 80, 985 (1996)

    Article  CAS  Google Scholar 

  28. P. Dutta, S. Boswas, K.D. De, J. Phys. 13, 9187 (2001)

    CAS  Google Scholar 

  29. K. Jager, H. Mcqueen, M. Techmutin, M. Kluppel, J. Phys. D 34, 2699 (2001)

    Article  CAS  Google Scholar 

  30. S. Capaccioli, M. Lucchesi, P.A. Rolla, C. Ruggeri, J. Phys. 10, 5595 (1998)

    CAS  Google Scholar 

  31. A.K. Jonscher, Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  32. A.N. Papathanassiou, I. Sakellis, J. Grammatikakis, Appl. Phys. Lett. 91, 122911 (2007)

    Article  Google Scholar 

  33. M. Cochet, G. Louarn, S. Quillard, J.P. Buisson, S. Lefrant, J. Raman Spectrosc. 31, 1041 (2000)

    Article  CAS  Google Scholar 

  34. M. Tagowska, B. Palys, K. Jackowska, Synth. Met. 142, 223 (2004)

    Article  CAS  Google Scholar 

  35. G. Louarn, M. Lapkowski, S. Quillard, A. Pron, J.P. Buisson, S. Lefrant, J. Phys. Chem. 100, 6998 (1996)

    Article  CAS  Google Scholar 

  36. J.E. Pereira da Silva, D.L.A. Faria, S.I.C. Torresi, M.L.A. Temperini, Macromolecules 33, 3077 (2000)

    Article  CAS  Google Scholar 

  37. Y.H. Kim, C. Foster, J.C. Chiang, A.J. Heeger, Synth. Met. 29, 285–290 (1989)

    Article  Google Scholar 

  38. F.L. Lu, F. Wudll, M. Nowak, A.J. Heeger, J. Am. Chem. Soc. 108, 8311–8313 (1986)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge Prof. Dr. P. Foot leader materials research group Kingston University UK, London for extending his laboratory facilities and A. S is also grateful to HEC for providing funding for the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Shakoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakoor, A., Rizvi, T.Z. & Nawaz, A. Raman spectroscopy and AC conductivity of polyaniline montmorillonite (PANI–MMT) nanocomposites. J Mater Sci: Mater Electron 22, 1076–1080 (2011). https://doi.org/10.1007/s10854-010-0262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0262-0

Keywords

Navigation