Skip to main content
Log in

Thermal processes in high-power laser bars investigated by spatially resolved thermoreflectance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The implementation of the thermoreflectance technique for the analysis of facet heating in commercial high-power laser bars is demonstrated. The technique provides highly spatially resolved information about facet temperature along the active stripes of all the emitters in the bar. The recorded maps reveal multiple hot-spots localized in the active area region of the laser structure. Apart from the thermoreflectance, thermal properties of the laser bar are studied by two complementary thermometric techniques: IR thermography which provides fast information about temperature profiles and hot spot location, and wavelength tuning technique which is used to determine the time-resolved bulk temperature for all emitters in the bar. Analysis of the results obtained by different methods indicates that the observed local overheating is related to defects starting at the laser facet or very close to the facet. The thermal data for non-degraded emitters, on the other hand, shows a moderate facet overheating of 5−12 °C (for the laser bar operating under quasicontinuous-wave conditions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, J. Harrison, IEEE Photon. Technol. Lett. 19, 960 (2007)

    Article  Google Scholar 

  2. P.W. Epperlein, G.L. Bona, P. Roentgen, Appl. Phys. Lett. 60, 680 (1992)

    Article  CAS  Google Scholar 

  3. D. Wawer, T.J. Ochalski, T. Piwoński, A. Wójcik-Jedlińska, M. Bugajski, H. Page, Phys. Stat. Sol. (a) 202, 1227 (2005)

    Article  CAS  Google Scholar 

  4. T.J. Ochalski, D. Pierścińska, K. Pierściński, M. Bugajski, J.W. Tomm, T. Grunske, A. Kozlowska, Appl. Phys. Lett. 89, 071104 (2006)

    Article  Google Scholar 

  5. M. Bugajski, T. Piwoński, D. Wawer, T.J. Ochalski, E. Deichsel, P. Unger, B. Corbett, Mater. Sci. Semicond. Process. 9, 188–197 (2006)

    Article  CAS  Google Scholar 

  6. A. Kozlowska, M. Latoszek, J.W. Tomm, F. Weik, T. Elsaesser, M. Zbroszczyk, M. Bugajski, B. Spellenberg, M. Bassler, Appl. Phys. Lett. 86, 203503 (2005)

    Article  Google Scholar 

  7. A. Kozlowska, Semicond. Sci. Technol. 22, R27–R40 (2007)

    Article  CAS  Google Scholar 

  8. R. Purchert, A. Bärwolff, M. Voss, J.W. Tomm, J. Luft, IEEE Trans. Compon. Packag. Manuf. Techn. 23, 95 (2000)

    Article  Google Scholar 

  9. M. Ziegler, F. Weik, J.W. Tomm, T. Elsaesser, W. Nakwaski, R.P. Sarzała, D. Lorenzen, J. Meusel, A. Kozlowska, Appl. Phys. Lett. 89, 263506 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Kozlowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierścińska, D., Kozlowska, A., Pierściński, K. et al. Thermal processes in high-power laser bars investigated by spatially resolved thermoreflectance. J Mater Sci: Mater Electron 19 (Suppl 1), 150–154 (2008). https://doi.org/10.1007/s10854-008-9643-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9643-z

Keywords

Navigation