Skip to main content
Log in

Optical fibre musical instruments: making sense of the senseless

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper demonstrates how the light transmitted through a stretched optical fibre may be used to detect its modes of vibration. In particular, replacing strings of a musical instrument with optical fibre allows the fabrication of a simple acoustic instrument with a single laser source and single detector. The detected signal contains rich harmonics of the vibrating fibre. This device may be used as a vibration, temperature or strain sensor, or simply as a musical instrument. Coating the optical fibre with novel materials such as PZLT may well allow a modification of vibration properties to enhance, suppress certain harmonics or lead to the development of simple electric field sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Kashyap, B.K. Nayar, An all single-mode fibre Michelson interferometer sensor. IEEE J. Lightwave Technol. LT-1(3), 619–624 (1983)

    Article  ADS  Google Scholar 

  2. R. Kashyap, M.H. Reeve, Single ended fibre strain and length measurement in the frequency domain. Electron. Lett. 16(18), 689–690 (1980)

    Article  Google Scholar 

  3. S. Hornung, R. Kashyap, M.H. Reeve, J.N. Russell, Axial strain in optical fibre cable manufacture and duct installation. IEEE J. Lightwave Technol. LT-1(2), 59–362 (1983)

    Google Scholar 

  4. R. Kashyap, S. Hornung, M.H. Reeve, S.A. Cassidy, Temperature de-sensitisation of delay in optical fibres for sensor applications. Electron. Lett. 19(24), 1039–1040 (1983)

    Article  ADS  Google Scholar 

  5. J.M. Lopez-Higurea (ed.), Handbook for Optical Fiber Sensing Technology (Wiley and Sons, New York, 2002)

  6. S.M. Chandani, N.A.F. Jaeger, Fiber-optic temperature sensor using evanescent fields in D fibers. IEEE Photon. Technol. Lett. 17(12), 2706–2708 (2005)

    Article  ADS  Google Scholar 

  7. N.Y. Fan, S. Huang, R.M. Measures, Localized long gage fiber optic strain sensors. Smart Mater. Struct. 7(2), 257–264 (1998) doi:10.1088/0964-1726/7/2/013

    Google Scholar 

  8. S.W. James, M.L. Dockney, R.P. Tatam, Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors. Electron. Lett. 32(12), 1133–1134 (1996)

    Article  Google Scholar 

  9. C. Haberstok, PhD Thesis, Die Holographische Modalanalyse, Technical University of Munich, 2005

  10. M.G. Murphy, C.G. Papen, Modal noise models for optical fibers under restricted mode launch conditions. Lasers and Electro-Optics Society Annual Meeting, 1997. LEOS apos;97 10th Annual Meeting. Conference Proceedings, IEEE, vol. 2, Issue, 10–13 Nov 1997, pp. 122–123

  11. K. Kageyama, H. Murayama, I. Ohsawa, M. Kanai, T. Motegi, K. Nagata, Y. Machijima, H. Matsumura, Development of a new fiber-optic acoustic/vibration sensor: principle, sensor performance, applicability to health monitoring and characteristic at elevated temperature, International Workshop on Structural Health Monitoring 2003, Stanford University, CA, 15–17 September 2003

  12. C.F. Garcia, R. Kashyap, in High Sensitivity Non-birefringent Mach-Zender Interferometer for Sensing UV Induced Refractive Index Change Using a Unique Short Bi-moded Optical Fibre, ed. by T. Erdogan, E.J. Friebele, R. Kashyap. OSA Trends in Optical Photonics, Bragg Gratings, Photosensitivity, Poling in Glass Waveguides. The Optical Society of America, vol. 33 (2000), pp. 54–50

  13. F.C. Garcia, M. Fokine, W. Margulis, R. Kashyap, Mach-Zehnder interferometer using single standard telecommunication optical fibre. Electron. Lett. 37(24), 1440–1442 (2001)

    Article  Google Scholar 

  14. A. Kumar, N.K. Goel, R.K. Varshney, Studies on a few-mode fiber-optic strain sensor based on LP01–LP02 mode interference. IEEE J. Lightwave Technol. 19(3), 58–362 (2001)

    Article  Google Scholar 

  15. O. Wang, G. Farrell, All-fiber multimode-interference-based refractometer sensor: proposal and design. Optics Lett. 31(3), 317–319 (2006)

    Article  ADS  Google Scholar 

  16. J. Ian, Measured Tones (IOP Publishing Ltd, Adam Hilger, Bristol, England, 1989), p. 114

    Google Scholar 

  17. R. Kashyap, P. Pantelis, Optical fibre absorption loss measurement using a pyroelectric poly(vinylidene fluoride) tube. J. Phys. D: Appl. Phys. 18, 709–1721 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

Canada Research Chairs program of the Natural Science and Engineering Research Council of Canada is acknowledged by RK for research support and Hannah Kashyap is acknowledged for inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Kashyap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fotsing-Djouwe, I.C., Gagné, M., Laurin, JJ. et al. Optical fibre musical instruments: making sense of the senseless. J Mater Sci: Mater Electron 20 (Suppl 1), 170–174 (2009). https://doi.org/10.1007/s10854-007-9499-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9499-7

Keywords

Navigation