Skip to main content
Log in

Electrical properties of some Y2O3 and/or Fe2O3-containing lithium silicate glasses and glass-ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ac electrical properties of some lithium silicate glasses and glass-ceramics containing varying proportions of Y2O3 and/or Fe2O3 were measured to investigate their electronic hopping mechanism. There is a clear variation of these properties with composition. The obtained results were related to the concentration and role of Y2O3 and/or Fe2O3 in the lithium silicate glass structure. In crystalline solids the electrical properties data obtained were correlated to the type and content of the mineral phases formed as indicated by X-ray diffraction analysis (XRD).

The conductivity, dielectric constant and dielectric loss of the studied glasses were studied using the frequency response in the interval 30 Hz–100 KHz and the effect of compositional changes on the measured properties was investigated. The measurements revealed that the electrical responses of the samples were different and complex. The addition of Y2O3 generally, decreased the ac conductivity, dielectric constant and dielectric losses of the lithium silicate glasses. The addition of Fe2O3 in Y2O3-containing glasses increases the conductivity, while, the dielectric constant and dielectric losses were found to be decreased. However, the addition of Fe2O3 instead of Y2O3 led to decrease the ac conductivity and increased their dielectric constant and dielectric losses.

The obtained data were argued to the internal structure of the lithium silicate glass and the nature or role-played by weakness or rigidity of the structure of the sample.

Lithium disilicate-Li2Si2O5, lithium metasilicate-Li2SiO3, two forms of yttrium silicate Y2Si2O7 & Y2SiO5, iron yttrium oxide-YFeO3, lithium iron silicate-LiFeSi2O6 and α-quartz phases were mostly developed in the crystallized glasses.

The conductivity of the crystalline materials was found to be relatively lower than those of the glass. At low frequency, as the Y2O3 content increased the ac conductivity, dielectric constant and dielectric loss data of the glass-ceramics decreased. However, the addition of Fe2O3 to the Y2O3 containing glass-ceramic led to increase the conductivity. The addition of high content of Fe2O3 instead of Y2O3 in the glass ceramic led to increase the ac conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.M. Gomaa, S.A. Hussain, E.A. El- Diwany, A.E. Bayoumi, M. Ghobashy, Presented at the 69th Annual International Meeting: Society of Exploration Geophysics (SEG) and International Exposition, Session “Borehole/Rock Physics characterization of rock and fluid properties”, Oral PHRP7, Oct. 31–Nov. 5 (Houston, Texas, 1999) 204–207

  2. P.N. Sen, C. Scala, M.H. Cohen, Geophys. 46(5), 781–795 (1981)

    Article  Google Scholar 

  3. W.E. Kenyon, J. Applied Phys. 55, 3153–3159 (1984)

    Article  Google Scholar 

  4. R. Knight, A. Nur, Geophys. 52(5), 644–654 (1987)

    Article  Google Scholar 

  5. P.W. McMillan, Glass-ceramics (Academic Press, London, N.Y., 1979)

    Google Scholar 

  6. E. Haslund, B.D. Hansen, R. Hilfer, B.J. Nost, J. Appl. Phys., 76, 5473–5480 (1994)

    Article  CAS  Google Scholar 

  7. B. Nettelblad, G.A. Niklasson, J. Phys.: Condens. Matter, 8, 2781–2790 (1996)

    Article  Google Scholar 

  8. M.B. Volf, Mathematical approach to glass, glass science and technology, vol. 9 (Elsevier Science Publishing Co., Inc., New York, 1988)

    Google Scholar 

  9. J.D. Mackenzie, J. Am. Ceram. Soc. 47(5), 211–214 (1964)

    Article  CAS  Google Scholar 

  10. K.W. Hansen, M.T. Splann, J. Electrochem. Soc. 113(9), 895–899 (1966)

    Article  CAS  Google Scholar 

  11. L.A. Grechanik, E.A. Fainberg, I.N. Zertsalova, Sov. Phys.-Solid State (Engl. Transl.) 4(2), 331–333 (1962)

    Google Scholar 

  12. G.O. Karapetyan, V.A. Tsekhomskii, D.M. Yudin, Sov. Phys.-Solid State (Engl. Transl.) 5(2), 456–460 (1963)

    Google Scholar 

  13. J. Wong, C.A. Angell, Glass structure by spectroscopy (Marcel Dekker, New York, 1967)

    Google Scholar 

  14. H. Darwish, M.M. Gomaa, J. Mater. Sci.: Mater. Electron. 17(1), 35–42 (2006)

    Article  CAS  Google Scholar 

  15. M.A. Kanehisa, J. Non-Cryst. Solids 151, 155–159 (1992)

    Article  CAS  Google Scholar 

  16. S.N. Salama, Z.S. El-Mandouh, Bull. NRC, Egypt 18(3), 211–224 (1993)

    Google Scholar 

  17. L. L. Hench H.F. Shaake, in Introduction to glass science, ed. by L.D. Pye and Co. (Plenum Press, New York, 1972), p. 583

  18. A.M. Nasser, S.S.H. Gomaa, S.M. Salman, F. Mostafa, Glass and Ceramic Bull. 30(3), 62 (1983)

    Google Scholar 

  19. K. Zirkelbach, R. Breuckner, Glastech. Ber. 61(1), 12 (1988)

    CAS  Google Scholar 

  20. V.N. Kondrative, Bond dissociation energies, ionization potentials and electron affinities (Manka, Moscow, 1974)

    Google Scholar 

  21. O.H. El-Bayoumi, R.K MacCrone, J. Am. Ceram. Soc. 59(9–10), 386–391 (1976)

    Article  CAS  Google Scholar 

  22. M. EL-Desoky, J. Phys. Chem. Solids 59(9), 1659–1666 (1998)

    Article  CAS  Google Scholar 

  23. A.A Zaky, R. Hawley, Dielectric solid, (Routledge and Kegan Paul Ltd, London, 1970), p. 37

    Google Scholar 

  24. H.K. Patel, S.W. Martin, Phys. Rev. B, 45, 10292–10300 (1992)

    Article  CAS  Google Scholar 

  25. P. Balaya, V.K. Shrikhande, G.P. Kothiyal, P.S. Goyal, Curr. Sci. 86(4), 553–556 (2004)

    CAS  Google Scholar 

  26. C.I. Merzbacher, W.B. White, J. Non-Cryst. Solids 130, 18–34 (1991)

    Article  CAS  Google Scholar 

  27. Y. Kato, H. Yamazaky, M. Tomozawa, J. Am. Ceram. Soc. 84(9), 2111–2116 (2001)

    Article  CAS  Google Scholar 

  28. S. Fujita, Y. Kato, M. Tomozawa, J. Non-Cryst. Solids 328, 64–70 (2003)

    Article  CAS  Google Scholar 

  29. R.A.B. Devine, J. Non-Cryst. Solids 152, 50 (1993)

    Article  CAS  Google Scholar 

  30. M. Rokita, M. Hanke, W. Mozgawa, J. Mol. Struct. 511/512, 277–280 (1999)

    Article  Google Scholar 

  31. E.I. Kamitsos, M.A. Karakassides, G.D. Chryssikos, J. Phys. Chem. 91(22), 5807–5813 (1987)

    Article  CAS  Google Scholar 

  32. K. El-Egili, Physica B 325, 340–348 (2003)

    Article  CAS  Google Scholar 

  33. M.A. Villegas, J.M. Fernandez Navarro, J. Non-Cryst. Solids 100(1–3), 453–460 (1988)

    Article  CAS  Google Scholar 

  34. Z. Strnad, Glass-ceramics materials, in glass science and technology, vol. 8 (Elsevier, Amsterdam, The Netherlands, 1986), pp. 185–252

    Google Scholar 

  35. A.P. Barranco, F.C. Pinar, O.P. Martinez, J.S. Guerra, I. Carmenate, J. Euro. Ceram. Soc. 19, 2677–2683 (1999)

    Article  CAS  Google Scholar 

  36. L. L. Hench, S.W. Freiman, D.L. Kinser, Phys. Chem. Glasses, 12, 58 (1971)

    CAS  Google Scholar 

  37. S.N. Salama, S.M. Salman, Ceramugia XVII(3/4),122 (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein Darwish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomaa, M.M., Darwish, H. & Salman, S.M. Electrical properties of some Y2O3 and/or Fe2O3-containing lithium silicate glasses and glass-ceramics. J Mater Sci: Mater Electron 19, 5–15 (2008). https://doi.org/10.1007/s10854-007-9288-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9288-3

Keywords

Navigation