Skip to main content
Log in

Effect of compositional changes on the structure and properties of alkali-alumino borosilicate glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of replacing BaO by SrO or Al2O3 by MgO on the structure and some physical properties of the glasses of the system Li2O-B2O3-(SrO)BaO-(MgO)Al2O3-SiO2—containing TiO2 have been investigated. Fourier transform infrared (FTIR) spectroscopy revealed that the addition of SrO at the expense of BaO gives no changes in the main structural building units. The addition of MgO instead of Al2O3 decreases the fraction of BO3 and increases the fraction of BO4 groups.

Dilatometric measurements showed that the thermal expansion coefficients (α-values) were increased by gradual addition of SrO or MgO instead of BaO or Al2O3, respectively, however the transformation (Tg) and softening (Ts) temperature values of the glasses were decreased. The density was found to decrease as SrO/BaO or MgO/Al2O3 replacements increased.

The conductivity, dielectric constant and dielectric loss (dielectric constant × loss tangent) of the glasses were investigated using the frequency response in the interval 200 Hz-100 KHz and the effect of compositional change on the measured properties was investigated. Measurements showed that the electric responses of samples were different and complex. The addition of SrO instead of BaO generally, increases the conductivity, dielectric constant and dielectric losss of the glasses. Increasing the MgO at the expense of Al2O3, the conductivity and dielectric constant of the glasses were decreased. However, the dielectric losss was increased.

The electrical properties were found to be factors that are able to distinguish the various electrical parameters as a result of the change in composition. The obtained data were correlated to the internal structure of the glasses and the nature and role played by glass forming cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. I. MERZBACHER and W. B. WHITE, J. Non-Cryst. Solids 130 (1991) 18.

    Article  CAS  Google Scholar 

  2. Y. KATO, H. YAMAZAKY and M. TOMOZAWA, J. Am. Ceram. Soc. 84(9) (2001) 2111.

    CAS  Google Scholar 

  3. S. FUJITA, Y. KATO and M. TOMOZAWA, J. Non-Cryst. Solids 328 (2003) 64.

    Article  CAS  Google Scholar 

  4. J. WONG and C. A. ANGELL, Glass structure by spectroscopy, Marcel Dekker, New York, 1967.

    Google Scholar 

  5. R. G. HILL, A. STAMBOULIS, R. V. LAW, A. CLIFFORD, M. R. TOWLER and C. CROWLEY, J. Non-Cryst. Solids 336 (2004) 223.

    Article  CAS  Google Scholar 

  6. M. M. GOMAA, S. A. HUSSAIN, E. A. EL-DIWANY, A. E. BAYOUMI and M. GHOBASHY, Renormalization group modeling of A. C. electrical properties of natural hematitic sandstone including texture effects, presented at the 69th annual international meeting: Society of Exploration Geophysics (SEG) and international Exposition, Session “Borehole/Rock Physics characterization of rock and fluid properties”, Oral PHRP7, Oct. 31 Nov. 5, Houston, Texas (1999) pp. 204–207.

  7. P. N. SEN, C. SCALA and M. H. COHEN, Geophysics 46(5) (1981) 781.

    Article  ISI  Google Scholar 

  8. W. E. KENYON, Journal of Applied Physics 55 (1984) 3153.

    Article  ISI  Google Scholar 

  9. R. KNIGHT and A. NUR, Geophysics 52(5) (1987) 644.

    Article  ISI  Google Scholar 

  10. E. HASLUND, B. D HANSEN, R. HILFER and COHENB. N.ST, J. Applied Physics 76 (1994) 5473.

    Article  CAS  Google Scholar 

  11. B. NETTELBLAD and G. A. NIKLASSON, J. Phys. Condens. Matter 8 (1996) 2781.

    Google Scholar 

  12. M. B. VOLF, Mathematical approach to glass, Glass Science and Technology, Vol. 9, Elsevier Science Publishing Co., Inc., New York, 1988.

    Google Scholar 

  13. P. W. MCMILLAN, Glass Ceramics, Academic Press, London, (1979).

    Google Scholar 

  14. R. A. B. DEVINE, J. Non-Cryst. Solids 152 (1993) 50.

    Article  CAS  Google Scholar 

  15. M. ROKITA, M. HANKE and W. MOZGAWA, J. Mol. Struct. 511/512 (1999) 277.

    Article  Google Scholar 

  16. E. I. KAMITSOS, M. A. KARAKASSIDES and G. D. CHRYSSIKOS, J. Phys. Chem. 91(22) (1987) 5807.

    Article  CAS  Google Scholar 

  17. K. EL-EGILI, Physica B 325 (2003) 340.

    Article  CAS  ISI  Google Scholar 

  18. M. A. VILLEGAS and J. M. F. NAVARRO, J. Non-Cryst. Solids 100(1–3) (1988) 453.

    CAS  Google Scholar 

  19. C. JULIEN, M. MASSOT, M. BALKANSKI, A. KROL and W. NAZAREWICZ, Mater. Sci. Engng. B3 (1989) 307.

    CAS  Google Scholar 

  20. J. A. DEAN, Analytical Chemistry Handbook, McGrew-Hill, New York, Chapter 6, 1995.

    Google Scholar 

  21. E. I. KAMITSOS, M. A. KARAKASSIDES and G. D. CHRYSSIKOS, J. Phys. Chem. 91 (1987) 1073.

    CAS  Google Scholar 

  22. W. L. KONIJNENDIJK, Philips Res. Suppl. 1 (1975).

  23. W. A. WEYL and E. C. MARBOE, The Constitution of Glasses, A Dynamic Interpretation, Academic Press, N.Y., Vol. 1 (1962) 353.

    Google Scholar 

  24. A. A. AHMED, A. F. ABBAS and S. M. SALMAN, Phys. Chem. Glasses 36(1) (1985) 17.

    Google Scholar 

  25. Z. STRNAD, Glass-Ceramics Materials, in Glass Science and Technology, Vol. 8, Elsevier, Amsterdam, The Netherlands (1986) p. 185.

    Google Scholar 

  26. J. ZARZYCKI, “Glass and Vitreous State”, Cambridge Univ. Press, N.Y., Port Chester (1991).

    Google Scholar 

  27. P. W. MCMILLAN, In Advances in Nucleation and Crystallization in Glasses, Am. Ceram. Soc., Columbus, Ohio (1971).

  28. M. M. A. SEKKINA, A. A. MEGAHED and I. A. GOHAR, Glass and Ceramic Bulletin 31(1–4) (1984) 28.

    Google Scholar 

  29. K. S. KIM and P. J. BRAY, Phys. Chem. Glasses 17 (1976) 205.

    Google Scholar 

  30. M. A. KANEHISA, J. Non-Cryst. Solids 151 (1992) 155.

    Article  CAS  Google Scholar 

  31. EL-DESOKY, J. Phys. Chem Solids 59(9) (1998) 1659.

    Article  CAS  Google Scholar 

  32. A. A ZAKY and R. HAWLEY, Dielectric Solid, Routledge and Kegan Paul Ltd, London (1970) 37.

    Google Scholar 

  33. K. L. NGAI and C. LEON Phys. Rev. B 60 (1999) 9396.

    Article  CAS  Google Scholar 

  34. H. K. PATEL and S. W. MARTIN, Phys. Rev. B 45 (1992) 10292.

    Article  CAS  Google Scholar 

  35. P. BALAYA, V. K. SHRIKHANDE, G. P. KOTHIYAL and P. S. GOYAL, Current Science 86(4) (2004) 553.

    CAS  ISI  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darwish, H., Gomaa, M.M. Effect of compositional changes on the structure and properties of alkali-alumino borosilicate glasses. J Mater Sci: Mater Electron 17, 35–42 (2006). https://doi.org/10.1007/s10854-005-5139-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-005-5139-2

Keywords

Navigation