Skip to main content
Log in

Lowering thermal conductivity in thermoelectric Ti2−xNiCoSnSb half Heusler high entropy alloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ti2−xNiCoSnSb (x = 0.125, 0.250, 0.375, and 0.500) half Heusler (HH) high-entropy thermoelectric alloys were synthesized by the arc melting—ball milling—spark plasma sintering route. The impact of secondary phase content on the thermoelectric properties in these alloys was examined. Ni-rich intermetallic (Ni3Sn2, Ni3Sn4) compounds were observed; the intermetallic content increased for lower Ti content, e.g., Ti1.5NiCoSnSb. A Ni-rich full Heusler (FH) secondary phase was also observed. These results were consistent with first-principles calculations that show that the formation enthalpy of Ti1.5NiCoSnSb was higher than that of Ti2NiCoSnSb and the full Heusler (FH) TiNi2Sn phase. In lower Ti content samples, the electrical conductivity increased, and lattice thermal conductivity decreased at the expense of thermopower owing to higher FH and the Ni3Sn2 phase content. Ti1.5NiCoSnSb exhibited lower lattice thermal conductivity of 3.5 W/mK, compared to 5.4 W/mK at 823 K for Ti2NiCoSnSb due to increased phonon scattering at HH/Ni3Sn2 interfaces. But considering the decreasing power factor with lower Ti content, the maximum ZT obtained in Ti1.875NiCoSnSb (0.171 at 973 K) was only marginally higher than the value for Ti2NiCoSnSb. Further, compositional tuning is hence necessary to maximize the power factor. 

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The detailed parameters used for DFT calculations, and the csv files of the raw data are available on request to the corresponding author. Data on densities, EDS analysis, lattice parameters and enthalpies are given in the Supporting data file.

References

  1. Beretta D, Neophytou N, Hodges JM et al (2019) Thermoelectrics: from history, a window to the future. Mater Sci Eng R Rep 138:210–255. https://doi.org/10.1016/j.mser.2018.09.001

    Article  Google Scholar 

  2. Yurddaskal M, Yurddaskal M, Yilmaz O, Gultekin S (2021) Thermoelectric films for electricity generation. In: Song Y (ed) Inorganic and organic thin films. Wiley, New York, pp 299–339

    Chapter  Google Scholar 

  3. Hu B, Shi XL, Zou J, Chen ZG (2022) Thermoelectrics for medical applications: progress, challenges, and perspectives. Chem Eng J 437:135268. https://doi.org/10.1016/j.cej.2022.135268

    Article  CAS  Google Scholar 

  4. Ochieng AO, Megahed TF, Ookawara S, Hassan H (2022) Comprehensive review in waste heat recovery in different thermal energy-consuming processes using thermoelectric generators for electrical power generation. Process Saf Environ Prot 162:134–154. https://doi.org/10.1016/j.psep.2022.03.070

    Article  CAS  Google Scholar 

  5. Al-Tahaineh H, AlEssa AHM (2022) A hybrid TEG/evacuated tube solar collectors for electric power generation and space heating. J Eng Appl Sci 69:1–15. https://doi.org/10.1186/s44147-021-00065-1

    Article  Google Scholar 

  6. Farrar-Foley N, Rongione N, Wu H, Lavine AS, Hu Y (2021) Total solar spectrum energy converter with integrated photovoltaics, thermoelectrics, and thermal energy storage: system modeling and design. Int J Energy Res 46:5731–5744. https://doi.org/10.1002/er.7518

    Article  CAS  Google Scholar 

  7. Freer R, Powell AV (2020) Realising the potential of thermoelectric technology: a roadmap. J Mater Chem C 8:441–463. https://doi.org/10.1039/c9tc05710b

    Article  CAS  Google Scholar 

  8. Vedernikov MV, Iordanishvili EK (1998) A. F. Ioffe and origin of modern semiconductor thermoelectric energy conversion. Int Conf Thermoelectr 17:37–42

    Google Scholar 

  9. Fitriani OR, Long BD et al (2016) A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew Sustain Energy Rev 64:635–659. https://doi.org/10.1016/j.rser.2016.06.035

    Article  CAS  Google Scholar 

  10. Baday C, Yurddaskal M, Ozgul M, Zor M (2017) Production, characterization and optimization of thermoelectric module and investigation of doping effects on thermoelectric performances. J Mater Sci Mater Electron 28:17468–17481. https://doi.org/10.1007/s10854-017-7681-0

    Article  CAS  Google Scholar 

  11. Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chemie Int Ed 48:8616–8639. https://doi.org/10.1002/anie.200900598

    Article  CAS  Google Scholar 

  12. Poon SJ (2019) Half Heusler compounds: promising materials for mid-to-high temperature thermoelectric conversion. J Phys D Appl Phys 52:493001. https://doi.org/10.1088/1361-6463/ab3d71

    Article  CAS  Google Scholar 

  13. Liu R, Xing Y, Liao J et al (2022) Thermal-inert and ohmic-contact interface for high performance half-Heusler based thermoelectric generator. Nat Commun 13:7738. https://doi.org/10.1038/s41467-022-35290-6

    Article  CAS  Google Scholar 

  14. Quinn RJ, Bos JWG (2021) Advances in half-Heusler alloys for thermoelectric power generation. Mater Adv 2:6246–6266. https://doi.org/10.1039/d1ma00707f

    Article  CAS  Google Scholar 

  15. Chen K, Zhang R, Bos JWG, Reece MJ (2022) Synthesis and thermoelectric properties of high-entropy half-Heusler MFe1−xCoxSb (M = equimolar Ti, Zr, Hf, V, Nb, Ta). J Alloys Compd 892:162045. https://doi.org/10.1016/j.jallcom.2021.162045

    Article  CAS  Google Scholar 

  16. Sekimoto T, Kurosaki K, Muta H, Yamanaka S (2006) Thermoelectric properties of Sn-doped TiCoSb half-Heusler compounds. J Alloys Compd 407:326–329. https://doi.org/10.1016/j.jallcom.2005.06.036

    Article  CAS  Google Scholar 

  17. Wang Q, Xie X, Li S et al (2021) Enhanced thermoelectric performance in Ti(Fe Co, Ni)Sb pseudo-ternary Half-Heusler alloys. J Mater 7:756–765. https://doi.org/10.1016/j.jmat.2020.12.015

    Article  Google Scholar 

  18. Karati A, Murty BS (2017) Synthesis of nanocrystalline half-Heusler TiNiSn by mechanically activated annealing. Mater Lett 205:114–117. https://doi.org/10.1016/j.matlet.2017.06.068

    Article  CAS  Google Scholar 

  19. Bahrami A, Ying P, Wolff U et al (2021) Reduced lattice thermal conductivity for half-Heusler ZrNiSn through cryogenic mechanical alloying. ACS Appl Mater Interfaces 13:38561–38568. https://doi.org/10.1021/acsami.1c05639

    Article  CAS  Google Scholar 

  20. Tillard M, Berche A, Jund P (2018) Synthesis of pure NiTiSn by mechanical alloying: an investigation of the optimal experimental conditions supported by first principles calculations. Metals (Basel) 8:835. https://doi.org/10.3390/met8100835

    Article  CAS  Google Scholar 

  21. Park G, Lee HS, Yi S (2022) Effects of annealing on the microstructure and thermoelectric properties of half-Heusler MNiSn (M = Ti, Zr, Hf). J Electron Mater 51:3485–3494. https://doi.org/10.1007/s11664-022-09627-2

    Article  CAS  Google Scholar 

  22. Chen LD, Huang XY, Zhou M et al (2006) The high temperature thermoelectric performances of Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 alloy with nanophase inclusions. J Appl Phys 99:064305. https://doi.org/10.1063/1.2180432

    Article  CAS  Google Scholar 

  23. Makongo JPA, Misra DK, Zhou X et al (2011) Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. J Am Chem Soc 133:18843–18852. https://doi.org/10.1021/ja206491j

    Article  CAS  Google Scholar 

  24. Yang X, Wang Y, Min R et al (2022) Enhancement in thermoelectric properties of ZrNiSn-based alloys by Ta doping and Hf substitution. Acta Mater 233:117976. https://doi.org/10.1016/j.actamat.2022.117976

    Article  CAS  Google Scholar 

  25. Al HMA, Wang J, Shin S et al (2021) Effects of aluminum content on thermoelectric performance of AlxCoCrFeNi high-entropy alloys. J Alloys Compd 883:160811. https://doi.org/10.1016/j.jallcom.2021.160811

    Article  CAS  Google Scholar 

  26. Ren W, Shi X, Wang Z, Ren Z (2022) Crystallographic design for half-Heuslers with low lattice thermal conductivity. Mater Today Phys 25:100704. https://doi.org/10.1016/j.mtphys.2022.100704

    Article  CAS  Google Scholar 

  27. Graf T, Klaer P, Barth J et al (2010) Phase separation in the quaternary Heusler compound CoTi(1–x)MnxSb - A reduction in the thermal conductivity for thermoelectric applications. Scr Mater 63:1216–1219. https://doi.org/10.1016/j.scriptamat.2010.08.039

    Article  CAS  Google Scholar 

  28. Karati A, Nagini M, Ghosh S et al (2019) Ti2NiCoSnSb - a new half-Heusler type high-entropy alloy showing simultaneous increase in Seebeck coefficient and electrical conductivity for thermoelectric applications. Sci Rep 9:5331. https://doi.org/10.1038/s41598-019-41818-6

    Article  CAS  Google Scholar 

  29. Karati A, Mishra SR, Ghosh S et al (2022) Thermoelectric properties of a high entropy half-Heusler alloy processed by a fast powder metallurgy route. J Alloys Compd 924:166108. https://doi.org/10.1016/j.jallcom.2022.166108

    Article  CAS  Google Scholar 

  30. Hoch M, Vardi J (1963) Thermal conductivity of TiC. J Am Ceram Soc 46:245

    Article  CAS  Google Scholar 

  31. He R, Huang L, Wang Y et al (2016) Enhanced thermoelectric properties of n-type NbCoSn half-Heusler by improving phase purity. APL Mater 4:104804. https://doi.org/10.1063/1.4952994

    Article  CAS  Google Scholar 

  32. Ferluccio DA, Smith RI, Buckman J, Bos JWG (2018) Impact of Nb vacancies and p-type doping of the NbCoSn-NbCoSb half-Heusler thermoelectrics. Phys Chem Chem Phys 20:3979–3987. https://doi.org/10.1039/c7cp07521a

    Article  CAS  Google Scholar 

  33. Xia K, Liu Y, Anand S et al (2018) Enhanced thermoelectric performance in 18-electron Nb0.8CoSb Half-Heusler compound with intrinsic Nb vacancies. Adv Funct Mater 28:1–7. https://doi.org/10.1002/adfm.201705845

    Article  CAS  Google Scholar 

  34. Ferluccio DA, Halpin JE, Macintosh KL et al (2019) Low thermal conductivity and promising thermoelectric performance in AXCoSb (A = V, Nb or Ta) half-Heuslers with inherent vacancies. J Mater Chem C 7:6539–6547. https://doi.org/10.1039/c9tc00743a

    Article  CAS  Google Scholar 

  35. Huang L, Liu T, Huang A et al (2021) Enhanced thermoelectric performance of nominal 19-electron half-Heusler compound NbCoSb with intrinsic Nb and Sb vacancies. Mater Today Phys 20:100450. https://doi.org/10.1016/j.mtphys.2021.100450

    Article  CAS  Google Scholar 

  36. Douglas JE, Birkel CS, Verma N et al (2014) Phase stability and property evolution of biphasic Ti-Ni-Sn alloys for use in thermoelectric applications. J Appl Phys 115:043720. https://doi.org/10.1063/1.4862955

    Article  CAS  Google Scholar 

  37. Tippireddy S, Chetty R, Naik MH et al (2018) Electronic and thermoelectric properties of transition metal substituted tetrahedrites. J Phys Chem C 122:8735–8749. https://doi.org/10.1021/acs.jpcc.7b12214

    Article  CAS  Google Scholar 

  38. Van De Walle A, Tiwary P, De Jong M et al (2013) Efficient stochastic generation of special quasirandom structures. Calphad 42:13–18. https://doi.org/10.1016/j.calphad.2013.06.006

    Article  CAS  Google Scholar 

  39. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  41. Hazama H, Matsubara M, Asahi R, Takeuchi T (2011) Improvement of thermoelectric properties for half-Heusler TiNiSn by interstitial Ni defects. J Appl Phys 110:063710. https://doi.org/10.1063/1.3633518

    Article  CAS  Google Scholar 

  42. Gürth M, Grytsiv A, Vrestal J et al (2015) On the constitution and thermodynamic modelling of the system Ti-Ni-Sn. RSC Adv 5:92270–92291. https://doi.org/10.1039/c5ra16074j

    Article  Google Scholar 

  43. Gharleghi A, Hung RH, Yang ZR et al (2018) Enhanced thermoelectric properties of hydrothermally synthesized Bi0.88-XZnXSb0.12 nanoalloys below the semiconductor-semimetal transition temperature. RSC Adv 8:20764–20772. https://doi.org/10.1039/c8ra03858a

    Article  CAS  Google Scholar 

  44. Goldsmid HJ, Sharp JW (1999) Estimation of the thermal band gap of a semiconductor from Seebeck measurements. J Electron Mater 28:869–872. https://doi.org/10.1007/s11664-999-0211-y

    Article  CAS  Google Scholar 

  45. Chauhan NS, Bhattacharjee D, Maiti T et al (2022) Low lattice thermal conductivity in a wider temperature range for biphasic-quaternary (Ti, V)CoSb Half-Heusler alloys. ACS Appl Mater Interfaces 14:54736–54747. https://doi.org/10.1021/acsami.2c16595

    Article  CAS  Google Scholar 

  46. Yang X, Liu D, Li J et al (2021) Top-down method to fabricate TiNi1+xSn half-Heusler alloy with high thermoelectric performance. J Mater Sci Technol 87:39–45. https://doi.org/10.1016/j.jmst.2021.01.052

    Article  CAS  Google Scholar 

  47. Karati A, Ghosh S, Mallik RC et al (2022) Effect of processing routes on the microstructure and thermoelectric properties of half-Heusler TiFe0.5Ni0.5Sb1−xSnx (x = 0, 0.05, 0.1, 0.2) alloys. J Mater Eng Perform 31:305–317. https://doi.org/10.1007/s11665-021-06207-z

    Article  CAS  Google Scholar 

  48. Jain A, Ong SP, Hautier G et al (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002. https://doi.org/10.1063/1.4812323

    Article  CAS  Google Scholar 

  49. Jia N, Cao J, Yi X et al (2021) Thermoelectric materials and transport physics. Mater Today Phys 21:100519. https://doi.org/10.1016/j.mtphys.2021.100519

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras for their facilities and technical support that aided the material synthesis and characterization. We are also grateful to the HPCE, IIT Madras for their supercomputing facility (Aqua) that enabled the first-principles studies performed in this study. This work is financially sponsored by AME Programmatic Fund by the Agency for Science, Technology and Research, Singapore under Grant No. A1898b0043 and A18B1b0061.

Author information

Authors and Affiliations

Authors

Contributions

SRM and AK contributed to conceptualization, data curation, formal analysis, investigation, methodology, and writing—original draft. SG contributed to investigation, writing—review and editing. RCM, RS and PSRK contributed to formal analysis and investigation. SKY contributed to formal analysis, writing—review and editing. RVR and BSM contributed to project administration, formal analysis, writing—review, and editing, and supervision.

Corresponding author

Correspondence to B. S. Murty.

Ethics declarations

Conflict of interest

The authors declare no competing financial or personal interests concerning the work reported in this manuscript to the best of their knowledge.

Ethical approval

Not applicable.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26615 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.R., Karati, A., Ghosh, S. et al. Lowering thermal conductivity in thermoelectric Ti2−xNiCoSnSb half Heusler high entropy alloys. J Mater Sci 58, 10736–10752 (2023). https://doi.org/10.1007/s10853-023-08664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08664-4

Navigation