Skip to main content

Advertisement

Log in

A review of thermal properties of CVD diamond films

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermal management has been increasingly recognized as a limiting factor for advanced high-power electronics. Diamond can offer unique technological opportunities in the field of thermal management due to a broad range of outstanding properties, such as exceptional high thermal conductivity, high radiation hardness, unique electronic, photonic and quantum characteristics, and outstanding mechanical behavior desirable for cutting-edge electronics, optics, and extreme mechanics. Diamond films have considerable applications for heat sink and high-power chips such as high-electron-mobility transistors and quantum devices where unique electronic or quantum properties, heat transfer, and structural stability are vital. The ever-growing miniaturization of electronics and the progresses in quantum sciences all call for diamond films with desired structures and properties. This review focuses on the thermal properties of chemical vapor deposited diamond thin films, including typical processing technologies, different techniques for thermal property measurement, in-plane and cross-plane thermal properties of various diamond thin films and associated interfacial thermal conductance in addition to highlights of diamond films for thermal management and other premier applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Copyright 2000, Springer Publishing Company

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Chen K, Song B, Ravichandran NK, Zheng Q, Chen X, Lee H, Sun H, Li S, Amila Gamage Udalamatta Gamage G, Tian F, Ding Z, Song Q, Rai A, Wu H, Koirala P, Schmidt AJ, Watanabe K, Lv B, Ren Z, Shi L, Cahill DG, Taniguchi T, Broido D, Chen G (2020) Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367:555–559

    Article  CAS  Google Scholar 

  2. Qi R, Shi R, Li Y, Sun Y, Wu M, Li N, Du J, Liu K, Chen C, Chen J, Wang F, Yu D, Wang EG, Gao P (2021) Measuring phonon dispersion at an interface. Nature 599(7885):399–403. https://doi.org/10.1038/s41586-021-03971-9

    Article  CAS  Google Scholar 

  3. Qin K, Liu E, Li J, Kang J, Shi C, He C, He F, Zhao N (2016) Free-standing 3D nanoporous duct-like and hierarchical nanoporous graphene films for micron-level flexible solid-state asymmetric supercapacitors. Adv Energy Mater. https://doi.org/10.1002/aenm.201600755

    Article  Google Scholar 

  4. Zhang Y, Hao N, Lin X, Nie S (2020) Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: a review. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.115888

    Article  Google Scholar 

  5. Zdrojek M (2021) Heat management with a twist in layered materials. Nat Int Weekly J Sci 597:637–638

    CAS  Google Scholar 

  6. Cheng Z, Bai T, Shi J, Feng T, Wang Y, Mecklenburg M, Li C, Hobart KD, Feygelson TI, Tadjer MJ, Pate BB, Foley BM, Yates L, Pantelides ST, Cola BA, Goorsky M, Graham S (2019) Tunable thermal energy transport across diamond membranes and diamond-Si interfaces by nanoscale graphoepitaxy. ACS Appl Mater Interfaces 11(20):18517–18527. https://doi.org/10.1021/acsami.9b02234

    Article  CAS  Google Scholar 

  7. Graebner JE, Jin S, Kammlott GW, Herb JA, Gardinier CF (1992) Unusually high thermal conductivity in diamond films. Appl Phys Lett 60(13):1576–1578. https://doi.org/10.1063/1.107256

    Article  CAS  Google Scholar 

  8. Tan Z, Li Z, Fan G, Kai X, Ji G, Zhang L, Zhang D (2013) Fabrication of diamond/aluminum composites by vacuum hot pressing: process optimization and thermal properties. Compos B Eng 47:173–180. https://doi.org/10.1016/j.compositesb.2012.11.014

    Article  CAS  Google Scholar 

  9. Wei L, Kuo PK, Thomas RL, Anthony TR, Banholzer WF (1993) Thermal conductivity of isotopically modified single crystal diamond. Phys Rev Lett 70(24):3764–3767

    Article  CAS  Google Scholar 

  10. Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: fundamentals and applications. MRS Bull 37(12):1273–1281. https://doi.org/10.1557/mrs.2012.203

    Article  Google Scholar 

  11. Mashali F, Languri E, Mirshekari G, Davidson J, Kerns D (2019) Nanodiamond nanofluid microstructural and thermo-electrical characterization. Int Commun Heat Mass Transfer 101:82–88. https://doi.org/10.1016/j.icheatmasstransfer.2019.01.007

    Article  CAS  Google Scholar 

  12. Angadi MA, Watanabe T, Bodapati A, Xiao X, Auciello O, Carlisle JA, Eastman JA, Keblinski P, Schelling PK, Phillpot SR (2006) Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films. J Appl Phys. https://doi.org/10.1063/1.2199974

    Article  Google Scholar 

  13. Anaya J, Rossi S, Alomari M, Kohn E, Tóth L, Pécz B, Hobart KD, Anderson TJ, Feygelson TI, Pate BB, Kuball M (2016) Control of the in-plane thermal conductivity of ultra-thin nanocrystalline diamond films through the grain and grain boundary properties. Acta Mater 103:141–152. https://doi.org/10.1016/j.actamat.2015.09.045

    Article  CAS  Google Scholar 

  14. Liu D, Francis D, Faili F, Middleton C, Anaya J, Pomeroy JW, Twitchen DJ, Kuball M (2016) Impact of diamond seeding on the microstructural properties and thermal stability of GaN-on-diamond wafers for high-power electronic devices. Scr Mater 128:57–60

    Article  Google Scholar 

  15. Ralchenko V, Nistor L, Pleuler E, Khomich A, Vlasov I, Khmelnitskii R (2003) Structure and properties of high-temperature annealed CVD diamond. Diam Relat Mater 12:1964–1970. https://doi.org/10.1016/S0925-9635Ž03.00214-0

    Article  CAS  Google Scholar 

  16. Goodson KE, Käding OW, Rösler M, Zachai R (1995) Experimental investigation of thermal conduction normal to diamond-silicon boundaries. J Appl Phys 77(4):1385–1392. https://doi.org/10.1063/1.358950

    Article  CAS  Google Scholar 

  17. Popov C, Kulisch W, Jelinek M, Bock A, Strnad J (2006) Nanocrystalline diamond/amorphous carbon composite films for applications in tribology, optics and biomedicine. Thin Solid Films 494:92–97. https://doi.org/10.1016/j.tsf.2005.07.163

    Article  CAS  Google Scholar 

  18. Kolodziej T, Vodnala P, Terentyev S, Blank V, Shvyd’Ko Y (2016) Diamond drumhead crystals for X-Ray optics applications. J Appl Crystallogr 49(4):1240–1244. https://doi.org/10.1107/S1600576716009171

    Article  CAS  Google Scholar 

  19. Koidp P, Klages C-P (1992) Optical applications of polycrystalline diamond. Diam Relat Mater 1(10–11):1065–1074

    Google Scholar 

  20. Guillén FJH, Janischowsky K, Kusterer J, Ebert W, Kohn E (2005) Mechanical characterization and stress engineering of nanocrystalline diamonds films for MEMS applications. Diam Related Mater 14:411–415. https://doi.org/10.1016/j.diamond.2004.12.061

    Article  CAS  Google Scholar 

  21. Murakawa M, Takeuchi S (1991) Mechanical applications of thin and thick diamond films. Surf Coat Technol 49:359–365

    Article  CAS  Google Scholar 

  22. Espinosa HD, Peng B, Kim K-H, Prorok BC, Moldovan N, Xiao XC, Gerbi JE, Birrell J, Auciello O, Carlisle JA, Gruen DM, Mancini DC (2002) Mechanical properties of ultrananocrystalline diamond thin films for MEMS applications. MRS Proc 741:J9.2.1-J9.2.6

    Article  Google Scholar 

  23. Rath, P.; Ummethala, S.; Nebel, C.; Pernice, W. H. P. (2015) Diamond as a Material for Monolithically Integrated Optical and Optomechanical Devices. Physica Status Solidi (A) Applications and Materials Science , 2s12 (11), 2385–2399. https://doi.org/10.1002/pssa.201532494.

  24. Shamsa M, Ghosh S, Calizo I, Ralchenko V, Popovich A, Balandin AA (2008) Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon. J Appl Phys. https://doi.org/10.1063/1.2907865

    Article  Google Scholar 

  25. Via G. D.; Felbinger, J. G.; Blevins, J.; Chabak, K.; Jessen, G.; Gillespie, J.; Fitch, R.; Crespo, A.; Sutherlin, K.; Poling, B.; Tetlak, S.; Gilbert, R.; Cooper, T.; Baranyai, R.; Pomeroy, J. W.; Kuball, M.; Maurer, J. J.; Bar-Cohen, A. (2014) Wafer-scale GaN HEMT performance enhancement by diamond substrate integration. Physica Status Solidi (C) Curr Top Solid State Phys; 11 (3–4), 871–874. https://doi.org/10.1002/pssc.201300504.

  26. Nazari M, Hancock BL, Anderson J, Hobart KD, Feygelson TI, Tadjer MJ, Pate BB, Anderson TJ, Piner EL, Holtz MW (2017) Optical characterization and thermal properties of CVD diamond films for integration with power electronics. Solid State Electron 136:12–17. https://doi.org/10.1016/j.sse.2017.06.025

    Article  CAS  Google Scholar 

  27. Anderson TJ, Hobart KD, Tadjer MJ, Koehler AD, Feygelson TI, Pate BB, Hite JK, Kub FJ, Eddy CR (2014) Advances in diamond integration for thermal management in GaN power HEMTs. ECS Trans 64(7):185–190. https://doi.org/10.1149/06407.0185ecst

    Article  CAS  Google Scholar 

  28. Graebner JE, Jin S, Kammlott GW, Herb JA, Gardinier CF (1992) Large anisotropic thermal in synthetic films. Nature 359(6394):401–403

    Article  CAS  Google Scholar 

  29. Yang Q, Zhao J, Huang Y, Zhu X, Fu W, Li C, Miao J (2019) A Diamond made microchannel heat sink for high-density heat flux dissipation. Appl Therm Eng 158:113804–113804. https://doi.org/10.1016/j.applthermaleng.2019.113804

    Article  CAS  Google Scholar 

  30. Guo Z, Bai H, Zhao X, Wang K, Guo R, Tian Y, Wang H (2022) The influence of nitrogen doping on the thermal conductivity of diamond heat sink. Spectrosc Lett 55(3):166–171

    Article  CAS  Google Scholar 

  31. Cho HJ, Yan D, Tam J, Erb U (2019) Effects of diamond particle size on the formation of copper matrix and the thermal transport properties in electrodeposited copper-diamond composite materials. J Alloys Compd 791:1128–1137. https://doi.org/10.1016/j.jallcom.2019.03.347

    Article  CAS  Google Scholar 

  32. Osipov AS, Klimczyk P, Rutkowski P, Melniychuk YA, Romanko LO, Podsiadlo M, Petrusha IA, Jaworska L (2021) Diamond composites of high thermal conductivity and low dielectric loss tangent. Mater Sci Eng B 269:115171. https://doi.org/10.1016/j.mseb.2021.115171

    Article  CAS  Google Scholar 

  33. Lu YJ, Lin CN, Shan CX (2018) Optoelectronic diamond: growth, properties, and photodetection applications. Adv Opt Mater. https://doi.org/10.1002/adom.201800359

    Article  Google Scholar 

  34. Massie LD (1991) Future trends in space power technology. IEEE Aerosp Electron Syst Mag 6(11):8–13

    Article  Google Scholar 

  35. Verhoeven H, Flöter A, Reiß H, Zachai R, Wittorf D, Jäger W (1997) Influence of the microstructure on the thermal properties of thin polycrystalline diamond films. Appl Phys Lett 71(10):1329–1331. https://doi.org/10.1063/1.119886

    Article  CAS  Google Scholar 

  36. Railkar TA, Kang WP, Windischmann H, Malshe AP, Naseem HA, Davidson JL, Brown WD (2000) A critical review of chemical vapor-deposited (CVD) diamond for electronic applications. Crit Rev Solid State Mater Sci 25(3):163–277. https://doi.org/10.1080/10408430008951119

    Article  CAS  Google Scholar 

  37. Spitsyn BV, Bouilov LL, Derjaguin BV (1981) Vapor growth of diamond on diamond and other surfaces. J Cryst Growth 52:219–226

    Article  CAS  Google Scholar 

  38. Yan C-S, Vohra YK, Mao H-K, Hemley RJ (2002) Very high growth rate chemical vapor deposition of single-crystal diamond. Jpn J Appl Phys 99(20):12523–12525

    CAS  Google Scholar 

  39. Eversole WG (1962) United States Patent

  40. Das D, Singh RN, Chattopadhyay S, Chen KH (2006) Thermal conductivity of diamond films deposited at low surface temperatures. J Mater Res 21(9):2379–2388. https://doi.org/10.1557/jmr.2006.0286

    Article  CAS  Google Scholar 

  41. Anaya J, Bai T, Wang Y, Li C, Goorsky M, Bougher TL, Yates L, Cheng Z, Graham S, Hobart KD, Feygelson TI, Tadjer MJ, Anderson TJ, Pate BB, Kuball M (2017) Simultaneous determination of the lattice thermal conductivity and grain/grain thermal resistance in polycrystalline diamond. Acta Mater 139:215–225. https://doi.org/10.1016/j.actamat.2017.08.007

    Article  CAS  Google Scholar 

  42. Jiang X, Fryda M, Jia CL (2000) High quality heteroepitaxial diamond films on silicon: recent progresses. Diam Relat Mater 9:1640–1645

    Article  CAS  Google Scholar 

  43. Tiwari RN, Tiwari JN, Chang L, Yoshimura M (2011) Enhanced nucleation and growth of diamond film on Si by CVD using a chemical precursor. J Phys Chem C 115(32):16063–16073. https://doi.org/10.1021/jp2041179

    Article  CAS  Google Scholar 

  44. Wurzinger P, Fuchs N, Schreck HeBmer MR, Stritzker B (1997) TEM Investigations on the heteroepitaxial nucleation of CVD diamond on (001) silicon substrates. Diam Relat Mater 6:752–757

    Article  CAS  Google Scholar 

  45. Wurzinger P, Ehrhardt H (1996) Diamond and related materials bias-enhanced diamond nucleation on silicon a TEM Study

  46. Stoner BR, Ma G-HM, Wolter SD, Glass JT (1992) Characterization of bias-enhanced nucleation of diamond on silicon by in vacuo surface analysis and transmission electron microscopy. Phys Rev B 45(19):11067–11084

    Article  CAS  Google Scholar 

  47. Salvatori S, Pettinato S, Piccardi A, Sedov V, Voronin A, Ralchenko V (2020) Thin diamond film on silicon substrates for pressure sensor fabrication. Materials. https://doi.org/10.3390/MA13173697

    Article  Google Scholar 

  48. Ding M, Liu Y, Lu X, Tang W (2019) Effect of laser ablation on microwave attenuation properties of diamond films. Materials. https://doi.org/10.3390/ma12223700

    Article  Google Scholar 

  49. Mallik AK, Binu SR, Satapathy LN, Narayana C, Seikh M, Shivashankar SA, Biswas SK (2010) Effect of substrate roughness on growth of diamond by hot filament CVD. Bull Mater Sci 33(3):251–255

    Article  CAS  Google Scholar 

  50. Neto MA, Silva EL, Fernandes AJS, Oliveira FJ, Silva RF (2012) Diamond/WC bilayer formation mechanism by hot-filament CVD. Surf Coat Technol 206(13):3055–3063. https://doi.org/10.1016/j.surfcoat.2011.12.005

    Article  CAS  Google Scholar 

  51. Yang S, He Z, Li Q, Zhu D, Gong J (2008) Diamond films with preferred <110> texture by hot filament CVD at low pressure. Diam Relat Mater 17(12):2075–2079. https://doi.org/10.1016/j.diamond.2008.07.005

    Article  CAS  Google Scholar 

  52. Hamzah E, Yong TM, Mat Yajid MA (2013) Surface morphology and bond characterization of nanocrystalline diamonds grown on tungsten carbide via hot filament chemical vapor deposition. J Cryst Growth 372:109–115. https://doi.org/10.1016/j.jcrysgro.2013.02.009

    Article  CAS  Google Scholar 

  53. Amaral M, Mohasseb F, Oliveira FJ, Bénédic F, Silva RF, Gicquel A (2005) Nanocrystalline diamond coating of silicon nitride ceramics by microwave plasma-assisted CVD. Thin Solid Films 482(1–2):232–236. https://doi.org/10.1016/j.tsf.2004.11.140

    Article  CAS  Google Scholar 

  54. Almeida FA, Salgueiredo E, Oliveira FJ, Silva RF, Baptista DL, Peripolli SB, Achete CA (2013) Interfaces in nano-/microcrystalline multigrade CVD diamond coatings. ACS Appl Mater Interfaces 5(22):11725–11729. https://doi.org/10.1021/am403401s

    Article  CAS  Google Scholar 

  55. Belmonte M, Oliveira FJ, Sacramento J, Fernandes AJS, Silva RF (2004) Cutting forces evolution with tool wear in sintered hardmetal turning with CVD diamond. Diam Relat Mater 13(4–8):843–847. https://doi.org/10.1016/j.diamond.2003.11.018

    Article  CAS  Google Scholar 

  56. Abreu CS, Oliveira FJ, Belmonte M, Fernandes AJS, Silva RF, Gomes JR (2005) Grain size effect on self-mated CVD diamond dry tribosystems. Wear 259(1–6):771–778. https://doi.org/10.1016/j.wear.2005.01.004

    Article  CAS  Google Scholar 

  57. Cui JB, Ma YR, Zhang JF, Chen H, Fang RC (1996) Growth and characterization of diamond film on aluminum nitride. Mater Res Bull 31(7):781–785

    Article  CAS  Google Scholar 

  58. Krauss AR, Auciello O, Gruen DM, Jayatissa A, Sumant A, Tucek J, Mancini DC, Moldovan N, Erdemir A, Ersoy D, Gardos MN, Busmann HG, Meyer EM, Ding MQ (1998) Ultrananocrystalline diamond thin films for MEMS andmoving mechanical assembly devices. Diam Relat Mater 10:1925–1961

    Google Scholar 

  59. Mandal S, Bland HA, Cuenca JA, Snowball M, Williams OA (2019) Superconducting boron doped nanocrystalline diamond on boron nitride ceramics. Nnaoscale 11:10266–10272

    Article  CAS  Google Scholar 

  60. Bhusari DM, Yang JR, Wang TY, Chen KH, Lin ST, Chen LC (1998) Novel two stage method for growth of highly transparent nano-crystalline diamond films. Mater Lett 36:279–283

    Article  CAS  Google Scholar 

  61. Chen LC, Wang TY, Yang JR, Chen KH, Bhusari DM, Chang YK, Hsieh HH, Pong WF (2000) Growth, characterization, optical and X-ray absorption studies of nano-crystalline diamond films. Diam Relat Mater 9:887–882

    Article  Google Scholar 

  62. Chen KH, Bhusari DM, Yang JR, Lin ST, Wang TY, Chen LC (1998) Highly transparent nano-crystalline diamond films via substrate pretreatment and methane fraction optimization. Thin Solid Films 332:34–39

    Article  CAS  Google Scholar 

  63. Bhusari DM, Yang JR, Wang TY, Lin ST, Chen KH, Chen LC (1998) Highly transparent nano-crystalline diamond films grown by microwave CVD. Solid Stale Commun 107(6):301–305

    Article  CAS  Google Scholar 

  64. Matsumoto S, Sato Y, Kamo M, Setaka N (1982) Vapor deposition of diamond particles from methane. Jpn J Appl Phys 21(4):183–185

    Article  CAS  Google Scholar 

  65. Ma Y, Tong J, Zhuang M, Liu J, Cheng S, Pei X, Li H, Sang D (2019) Superhydrophilic Surface of oxidized freestanding CVD diamond films: preparation and application to test solution conductivity. Results Phys 15:102628. https://doi.org/10.1016/j.rinp.2019.102628

    Article  Google Scholar 

  66. Srikanth VVSS (2012) Review of advances in diamond thin film synthesis. Proc Inst Mech Eng C J Mech Eng Sci 226(2):303–318. https://doi.org/10.1177/0954406211422788

    Article  CAS  Google Scholar 

  67. Gruen DM (1998) Nucleation, growth, and microstructure of nanocrystalline diamond films. MRS Bull 23(9):32–35. https://doi.org/10.1557/S088376940002933X

    Article  CAS  Google Scholar 

  68. Gicquel A, Hassouni K, Achard J (2001) CVD diamond films: from growth to applications. Curr Appl Phys 6:479–496

    Article  Google Scholar 

  69. Butler JE, Woodin RL (1993) Thin film diamond growth mechanisms. Philos Trans R Soc Lond A 342:209–224

    Article  CAS  Google Scholar 

  70. Hirose Y, Terasawa Y (1986) Synthesis of diamond thin films by thermal CVD using organic compounds. Jpn J Appl Phys 25(6):519–521

    Article  Google Scholar 

  71. Shimizu K, Einaga Y, Fujishima A, Ohnishi K (2002) Radio frequency GDOES depth profiling analysis of a B-doped diamond film deposited onto Si by microwave plasma CVD. Surf Interface Anal 33(1):35–40. https://doi.org/10.1002/sia.1158

    Article  CAS  Google Scholar 

  72. Matsumoto S, Tsutsumi M, Setaka N (1982) Growth of diamond particles from methane-hydrogen gas. J Mater Sci 17(11):3106–3112

    Article  CAS  Google Scholar 

  73. Li H, Lee HJ, Park JK, Baik YJ, Hwang GW, Jeong JH, Lee WS (2009) Control of abnormal grain inclusions in the nanocrystalline diamond film deposited by hot filament CVD. Diam Relat Mater 18(11):1369–1374. https://doi.org/10.1016/j.diamond.2009.08.009

    Article  CAS  Google Scholar 

  74. Haubner R, Lux B (1993) Diamond growth by hot-filament chemical vapor deposition: state of the art. Diam Relat Mater 2:1277–1294

    Article  CAS  Google Scholar 

  75. Chen C-F, Huang YC, Hosomi S, Yoshida I (1989) Effect of oxygen addition on microwave plasma CVD of diamond from CH4-H2 mixture. Mat. Res. Bull 24:87–94

    Article  CAS  Google Scholar 

  76. Hirmke J, Schwarz S, Rottmair C, Rosiwal SM, Singer RF (2006) Diamond single crystal growth in hot filament CVD. Diam Relat Mater 15(4–8):536–541. https://doi.org/10.1016/j.diamond.2006.01.003

    Article  CAS  Google Scholar 

  77. He XC, Zhang ZM, Shen HS, Li GY (1996) Surface structure characterization of WC-Co substrate by hot filament radiation in diamond film growth. Diam Relat Mater 5:83–85

    Article  CAS  Google Scholar 

  78. Soto G, Silva G, Contreras O (2006) A Study on the flexibility of the hot-filament configuration and its implementation for diamond, boron carbide and ternary alloys deposition. Surf Coat Technol 201(6):2733–2740. https://doi.org/10.1016/j.surfcoat.2006.05.014

    Article  CAS  Google Scholar 

  79. Bohr S, Haubner R, Lux B (1995) Influence of phosphorus addition on diamond CVD. Diam Relat Mater 4:133–144

    Article  CAS  Google Scholar 

  80. Uppireddi K, Weiner BR, Morell G (2008) Synthesis of nanocrystalline diamond films by DC plasma-assisted argon-rich hot filament chemical vapor deposition. Diam Relat Mater 17(1):55–59. https://doi.org/10.1016/j.diamond.2007.10.012

    Article  CAS  Google Scholar 

  81. Alcantar-Peña JJ, de Obaldia E, Tirado P, Arellano-Jimenez MJ, Ortega Aguilar JE, Veyan JF, Yacaman MJ, Koudriavtsev Y, Auciello O (2019) Polycrystalline diamond films with tailored micro/nanostructure/doping for new large area film-based diamond electronics. Diam Relat Mater 91:261–271. https://doi.org/10.1016/j.diamond.2018.11.028

    Article  CAS  Google Scholar 

  82. Wohle J, Gebauer-Teichmann A, Rie K-T (2001) Comparison of radio frequency and pulsed-d.c. plasma CVD of Ti-C-N-H and Zr-C-N-H layers at low temperature. Surf Coat Technol 142:661–664

    Article  Google Scholar 

  83. Shigeta M, Murphy AB (1993) Large-area high-speed diamond deposition by Rf induction thermal plasma chemical vapor deposition method. Jpn J Appl Phys 32:438–440

    Article  Google Scholar 

  84. Lue J-T, Chen S-Y, Chen C-L, Lin M-C (2000) Field emission studies of diamond-like films grown by RFCVD. J Non Cryst Solids 265(3):230–237

    Article  CAS  Google Scholar 

  85. Popov C, Kulisch W, Gibson PN, Ceccone G, Jelinek M (2004) Growth and characterization of nanocrystalline diamond/amorphous carbon composite films prepared by MWCVD. Diam Relat Mater 13(4–8):1371–1376. https://doi.org/10.1016/j.diamond.2003.11.040

    Article  CAS  Google Scholar 

  86. Popov C, Jelinek M, Boycheva S, Vorlicek V, Kulisch W (2005) Influence of the gas phase composition on nanocrystalline diamond films prepared by MWCVD. J Metastable Nanocryst Mater 23:31–34. https://doi.org/10.4028/www.scientific.net/JMNM.23.31

    Article  CAS  Google Scholar 

  87. Chu, Y.-C.; Jiang, G.; Chang, C.; Ting, J.-M.; Lee, H.-L. (2011) Tzeng, Y. Room-temperature diamond seeding and microwave plasma enhanced CVD growth of nanodiamond with a tungsten interfacial layer. In: 2011 11th IEEE international conference on nanotechnology; pp 1367–1370. https://doi.org/10.1109/NANO.2011.6144477

  88. Badzian AR (1988) Crystallization of diamond from the gas phase; part 1 73–70. Mater Res Bull 23:385–400

    Article  CAS  Google Scholar 

  89. Beckmann R, Sobisch B, Kulisch W (1995) On the gas-phase mechanisms in MWCVD and HFCVD diamond deposition. Diam Relat Mater 4:256–260

    Article  CAS  Google Scholar 

  90. Zalieckas J, Pobedinskas P, Greve MM, Eikehaug K, Haenen K, Holst B (2021) Large area microwave plasma CVD of diamond using composite right/left-handed materials. Diam Relat Mater. https://doi.org/10.1016/j.diamond.2021.108394

    Article  Google Scholar 

  91. Rodin D, Yee SK (2017) Simultaneous measurement of in-plane and through-plane thermal conductivity using beam-offset frequency domain thermoreflectance. Rev Sci Instrum. https://doi.org/10.1063/1.4973297

    Article  Google Scholar 

  92. Zhao D, Qian X, Gu X, Jajja SA, Yang R (2016) Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J Electron Packag Trans ASME. https://doi.org/10.1115/1.4034605

    Article  Google Scholar 

  93. Cahill DG (2018) Thermal-conductivity measurement by time-domain thermoreflectance. MRS Bull 43(10):768–774. https://doi.org/10.1557/mrs.2018.209

    Article  Google Scholar 

  94. Gaskins JT, Kotsonis G, Giri A, Ju S, Rohskopf A, Wang Y, Bai T, Sachet E, Shelton CT, Liu Z, Cheng Z, Foley B, Graham S, Luo T, Henry A, Goorsky MS, Shiomi J, Maria J-P, Hopkins PE (2018) Thermal boundary conductance across heteroepitaxial ZnO/GaN interfaces: assessment of the phonon gas model. Nano Lett 18(12):7469–7477

    Article  CAS  Google Scholar 

  95. Cheng Z, Bougher T, Bai T, Wang SY, Li C, Yates L, Foley BM, Goorsky M, Cola BA, Faili F, Graham S (2018) Probing growth-induced anisotropic thermal transport in high-quality CVD diamond membranes by multifrequency and multiple-spot-size time-domain thermoreflectance. ACS Appl Mater Interfaces 10(5):4808–4815. https://doi.org/10.1021/acsami.7b16812

    Article  CAS  Google Scholar 

  96. Kang K, Koh YK, Chiritescu C, Zheng X, Cahill DG (2008) Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters. Rev Sci Instrum. https://doi.org/10.1063/1.3020759

    Article  Google Scholar 

  97. Liu J, Zhu J, Tian M, Gu X, Schmidt A, Yang R (2013) Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method. Rev Sci Instrum. https://doi.org/10.1063/1.4797479

    Article  Google Scholar 

  98. Mansour M, Kocer G, Lenherr C, Chokani N, Abhari RS (2011) Seven-sensor fast-response probe for full-scale wind turbine flowfield measurements. J Eng Gas Turbine Power, DOI 10(1115/1):4002781

    Google Scholar 

  99. Yang ZH (2017) The comparison of the 3ω method and the laser flash thermal measurement. https://escholarship.org/uc/item/3rs9w4h5.

  100. Zhang D (2018) Thermal properties on anisotropic thin film materials. https://digitalcommons.usu.edu/etd/7356

  101. Jiang P, Qian X, Yang R (2017) Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach. Rev Sci Instrum. https://doi.org/10.1063/1.4991715

    Article  Google Scholar 

  102. Brown DB, Bougher TL, Cola BA, Kumar S (2018) Oxidation limited thermal boundary conductance at metal-graphene interface. Carbon N Y 139:913–921. https://doi.org/10.1016/j.carbon.2018.08.002

    Article  CAS  Google Scholar 

  103. Chen G (2005) Nanoscale energy transport and conversion, 1st edn. Oxford University Press, England

    Google Scholar 

  104. Casimir HBG (1938) Note on conduction of heat in crystals. Physica 6:495–499

    Article  Google Scholar 

  105. Rossi S, Alomari M, Zhang Y, Bychikhin S, Pogany D, Weaver JMR, Kohn E (2013) Thermal analysis of submicron nanocrystalline diamond films. Diam Relat Mater 40:69–74. https://doi.org/10.1016/j.diamond.2013.10.004

    Article  CAS  Google Scholar 

  106. Yamamoto Y, Imai T, Tanabe K, Tsuno T, Kumazawa Y, Fujimori N (1997) The measurement of thermal properties of diamond. Diam Relat Mater 6:1057–1061

    Article  CAS  Google Scholar 

  107. Jiang P, Qian X, Yang R (2018) Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J Appl Phys 10(1063/1):5046944

    Google Scholar 

  108. Stephens AW, Vossen JL (1998) Measurement of interfacial bond strength by laser spallation. J Vac Sci Technol 13(1):38. https://doi.org/10.1116/1.568925

    Article  Google Scholar 

  109. Cui Y, Li M, Hu Y (2020) Emerging interface materials for electronics thermal management: experiments, modeling, and new opportunities. J Mater Chem C R Soc Chem. https://doi.org/10.1039/c9tc05415d

    Article  Google Scholar 

  110. Farimani M (2016) High-accuracy thermal-conductivity characterisation of thin-film/substrate systems and interfaces by modified 3-omega method. https://doi.org/10.26190/unsworks/2954.

  111. Sood A, Cho J, Hobart KD, Feygelson TI, Pate BB, Asheghi M, Cahill DG, Goodson KE (2016) Anisotropic and inhomogeneous thermal conduction in suspended thin-film polycrystalline diamond. J Appl Phys. https://doi.org/10.1063/1.4948335

    Article  Google Scholar 

  112. Graebner JE, Mucha JA, Seibles L, Kammlott GW (1992) The thermal conductivity of chemical-vapor-deposited diamond films on silicon. J Appl Phys 71(7):3143–3146. https://doi.org/10.1063/1.350981

    Article  CAS  Google Scholar 

  113. Yates L, Cheng Z, Bai T, Hobart K, Tadjer M, Feygelson TI, Pate BB, Goorsky M, Graham S, Woodruff GW (2021) Simultaneous evaluation of heat capacity and in-plane thermal conductivity of nanocrystalline diamond thin films. Nanoscale Microscale Thermophys Eng 25(3–4):166–178

    Article  CAS  Google Scholar 

  114. Morelli DT, Beetz CP, Perry TA (1988) Thermal conductivity of synthetic diamond films. J Appl Phys 64(6):3063–3066. https://doi.org/10.1063/1.341571

    Article  CAS  Google Scholar 

  115. Mohr M, Daccache L, Horvat S, Brühne K, Jacob T, Fecht HJ (2017) Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films. Acta Mater 122:92–98. https://doi.org/10.1016/j.actamat.2016.09.042

    Article  CAS  Google Scholar 

  116. Goyal V, Kotchetkov D, Subrina S, Rahman M, Balandin AA (2010) Thermal conduction through diamond - silicon heterostructures. In: 12th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems; IEEE, pp 1–6

  117. Cheng Z, Mu F, Yates L, Suga T, Graham S (2020) Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices. ACS Appl Mater Interfaces 12(7):8376–8384. https://doi.org/10.1021/acsami.9b16959

    Article  CAS  Google Scholar 

  118. Pomeroy JW, Bernardoni M, Dumka DC, Fanning DM, Kuball M (2014) Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional raman thermography mapping. Appl Phys Lett. https://doi.org/10.1063/1.4865583

    Article  Google Scholar 

  119. Dumka DC, Chou TM, Jimenez ZL, Fannin DM, Francis DG, Faili F, Ejeckam F, Bernardoni M, Pomeroy JW, Kuball M (2013) Electrical and thermal performance of AlGaN/GaN HEMTs on diamond substrate for RF applications. In: IEEE Compound semiconductor integrated circuit symposium (CSIC); IEEE, pp 1–4

  120. Cho J, Won Y., Asheghi M., Goodson KE, Francis D (2014) Thermal interface resistance measurements for GaN-on-diamond composite substrates. In: IEEE compound semiconductor integrated circuit symposium (CSIC), pp 1–4

  121. Sun H, Simon RB, Pomeroy JW, Francis D, Faili F, Twitchen DJ, Kuball M (2015) Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. Appl Phys Lett. https://doi.org/10.1063/1.4913430

    Article  Google Scholar 

  122. Zhou Y, Anaya J, Pomeroy J, Sun H, Gu X, Xie A, Beam E, Becker M, Grotjohn TA, Lee C, Kuball M (2017) Barrier-layer optimization for enhanced GaN-on-diamond device cooling. ACS Appl Mater Interfaces 9(39):34416–34422. https://doi.org/10.1021/acsami.7b08961

    Article  CAS  Google Scholar 

  123. Yates L, Anderson J, Gu X, Lee C, Bai T, Mecklenburg M, Aoki T, Goorsky MS, Kuball M, Piner EL, Graham S (2018) Low thermal boundary resistance interfaces for GaN-on-diamond devices. ACS Appl Mater Interfaces 10(28):24302–24309. https://doi.org/10.1021/acsami.8b07014

    Article  CAS  Google Scholar 

  124. Yang H-S, Bai G-R, Thompson LJ, Eastman JA (2002) Interfacial thermal resistance in nanocrystalline Yttria-stabilized zirconia. Acta Mater 50(9):2309–2317

    Article  CAS  Google Scholar 

  125. Wei L, Kuo PK, Thomas RL, Anthony TR, Banholzer WF (1993) Thermal conductivity of isotopically modified single crystal diamond. Phys Rev Lett 70:3764–3767

    Article  CAS  Google Scholar 

  126. Inyushkin A, Taldenkov AN, Ralchenko VG, Bolshakov AP, Koliadin A, Katrusha AN (2018) Thermal conductivity of high purity synthetic single crystal diamonds. Phys Rev B. https://doi.org/10.1103/PhysRevB.97.144305

    Article  Google Scholar 

  127. DeCoster ME, Meyer KE, Piercy BD, Gaskins JT, Donovan BF, Giri A, Strnad NA, Potrepka DM, Wilson AA, Losego MD, Hopkins PE (2018) Density and size effects on the thermal conductivity of atomic layer deposited TiO2 and Al2O3 thin films. Thin Solid Films 650:71–77. https://doi.org/10.1016/j.tsf.2018.01.058

    Article  CAS  Google Scholar 

  128. Kühnel F, Metzke C, Weber J, Schätz J, Duesberg GS, Benstetter G (2022) Investigation of heater structures for thermal conductivity measurements of SiO2 and Al2O3 thin films using the 3-omega method. Nanomaterials. https://doi.org/10.3390/nano12111928

    Article  Google Scholar 

  129. Paterson J, Singhal D, Tainoff D, Richard J, Bourgeois O (2020) Thermal conductivity and thermal boundary resistance of amorphous Al2O3 thin films on germanium and sapphire. J Appl Phys. https://doi.org/10.1063/5.0004576

    Article  Google Scholar 

  130. Lee SM, Cahill DG (1997) Influence of interface thermal conductance on the apparent thermal conductivity of thin films. Microscale Thermophys Eng 1(1):47–52. https://doi.org/10.1080/108939597200421

    Article  CAS  Google Scholar 

  131. Zhang X, Grigoropoulos CP (1995) Thermal conductivity and diffusivity of free-standing silicon nitride thin films. Rev Sci Instrum 66(2):1115–1120. https://doi.org/10.1063/1.1145989

    Article  CAS  Google Scholar 

  132. Bogner M, Hofer A, Benstetter G, Gruber H, Fu RYQ (2015) Differential 3ω method for measuring thermal conductivity of AIN and Si3N4 thin films. Thin Solid Films 591:267–270. https://doi.org/10.1016/j.tsf.2015.03.031

    Article  CAS  Google Scholar 

  133. Choi SR, Kim D, Choa SH, Lee SH, Kim JK (2006) Thermal conductivity of AlN and SiC thin films. Int J Thermophys 27(3):896–905. https://doi.org/10.1007/s10765-006-0062-1

    Article  CAS  Google Scholar 

  134. Alomari M, Dipalo M, Rossi S, Diforte-Poisson MA, Delage S, Carlin JF, Grandjean N, Gaquiere C, Toth L, Pecz B, Kohn E (2011) Diamond overgrown InAlN/GaN HEMT. Diam Relat Mater 20(4):604–608. https://doi.org/10.1016/j.diamond.2011.01.006

    Article  CAS  Google Scholar 

  135. Anderson TJ, Koehler AD, Hobart KD, Tadjer MJ, Feygelson TI, Hite JK, Pate BB, Kub FJ, Eddy CR (2013) Nanocrystalline diamond-gated AlGaN/GaN HEMT. IEEE Electron Device Lett 34(11):1382–1384. https://doi.org/10.1109/LED.2013.2282968

    Article  CAS  Google Scholar 

  136. Labudovic M, Burka M (2003) Heat transfer and residual stress modeling of a diamond film heat sink for high power laser diodes. IEEE Trans Compon Packag Technol 26(3):575–581. https://doi.org/10.1109/TCAPT.2003.817649

    Article  CAS  Google Scholar 

  137. Rath P, Khasminskaya S, Nebel C, Wild C, Pernice WHP (2013) ARTICLE diamond-integrated optomechanical circuits. Nat Commun. https://doi.org/10.1038/ncomms2710

    Article  Google Scholar 

  138. Gurbuz Y, Kang WP, Davidson JL, Kerns D (1998) High temperature tolerant diamond-based microelectronic oxygen gas sensor. Sens Actuators B 49:115–120

    Article  CAS  Google Scholar 

  139. Peng X, Chu J, Wang L, Duan S, Feng P (2017) Boron-doped diamond nanowires for co gas sensing application. Sens Actuators B Chem 241:383–389. https://doi.org/10.1016/j.snb.2016.10.009

    Article  CAS  Google Scholar 

  140. Kania DR, Landstrass MI, Plano MA (1993) Diamond radiation detectors. Diam Relat Mater 2:1012–1019

    Article  CAS  Google Scholar 

  141. Kiyota H, Matsushima E, Sato K, Okushi H, Ando T, Kamo M, Sato Y, Iida M (1995) Electrical properties of Schottky barrier formed on as-grown and oxidized surface of homoepitaxially grown diamond (001) film. Appl Phys Lett 67:3596. https://doi.org/10.1063/1.115329

    Article  CAS  Google Scholar 

  142. Zalazar M, Guarnieri F (2013) Diamond-based thin film bulk acoustic wave resonator for biomedical applications. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/477/1/012009

    Article  Google Scholar 

  143. Hutchinson AB, Truitt PA, Schwab KC, Sekaric L, Parpia JM, Craighead HG, Butler JE (2004) Dissipation in nanocrystalline-diamond nanomechanical resonators. Appl Phys Lett 84(6):972–974. https://doi.org/10.1063/1.1646213

    Article  CAS  Google Scholar 

  144. Auciello O, Pacheco S, Sumant A, Gudeman C, Sampath S, Datta A, Carpick RW, Adiga VP, Zurcher P, Ma Z, Yuan HC, Carlisle JA, Kabius B, Hiller J, Srinivasan S (2007) Are diamonds a MEMS’ best friend? IEEE Microwave Mag. https://doi.org/10.1109/MMM.2007.907816

    Article  Google Scholar 

  145. Salgueiredo E, Almeida FA, Amaral M, Fernandes AJS, Costa FM, Silva RF, Oliveira FJ (2009) CVD Micro/nanocrystalline diamond (MCD/NCD) bilayer coated odontological drill bits. Diam Relat Mater 18(2–3):264–270. https://doi.org/10.1016/j.diamond.2008.08.014

    Article  CAS  Google Scholar 

  146. Meng XM, Tang WZ, Hei LF, Li CM, Askari SJ, Chen GC, Lu FX (2008) Application of CVD nanocrystalline diamond films to cemented carbide drills. Int J Refract Metals Hard Mater 26(5):485–490. https://doi.org/10.1016/j.ijrmhm.2007.11.006

    Article  CAS  Google Scholar 

  147. Sussmann RS, Scarsbrook GA, Wort CJH, Wood RM (1994) Laser Damage testing of CVD-grown diamond windows. Diam Relat Mater 3(9):1173–1177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoying Ni.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Vispute, R.D., Fu, K. et al. A review of thermal properties of CVD diamond films. J Mater Sci 58, 3485–3507 (2023). https://doi.org/10.1007/s10853-023-08232-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08232-w