Abstract
Thermal management has been increasingly recognized as a limiting factor for advanced high-power electronics. Diamond can offer unique technological opportunities in the field of thermal management due to a broad range of outstanding properties, such as exceptional high thermal conductivity, high radiation hardness, unique electronic, photonic and quantum characteristics, and outstanding mechanical behavior desirable for cutting-edge electronics, optics, and extreme mechanics. Diamond films have considerable applications for heat sink and high-power chips such as high-electron-mobility transistors and quantum devices where unique electronic or quantum properties, heat transfer, and structural stability are vital. The ever-growing miniaturization of electronics and the progresses in quantum sciences all call for diamond films with desired structures and properties. This review focuses on the thermal properties of chemical vapor deposited diamond thin films, including typical processing technologies, different techniques for thermal property measurement, in-plane and cross-plane thermal properties of various diamond thin films and associated interfacial thermal conductance in addition to highlights of diamond films for thermal management and other premier applications.
Graphical abstract



Copyright 2000, Springer Publishing Company









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Chen K, Song B, Ravichandran NK, Zheng Q, Chen X, Lee H, Sun H, Li S, Amila Gamage Udalamatta Gamage G, Tian F, Ding Z, Song Q, Rai A, Wu H, Koirala P, Schmidt AJ, Watanabe K, Lv B, Ren Z, Shi L, Cahill DG, Taniguchi T, Broido D, Chen G (2020) Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367:555–559
Qi R, Shi R, Li Y, Sun Y, Wu M, Li N, Du J, Liu K, Chen C, Chen J, Wang F, Yu D, Wang EG, Gao P (2021) Measuring phonon dispersion at an interface. Nature 599(7885):399–403. https://doi.org/10.1038/s41586-021-03971-9
Qin K, Liu E, Li J, Kang J, Shi C, He C, He F, Zhao N (2016) Free-standing 3D nanoporous duct-like and hierarchical nanoporous graphene films for micron-level flexible solid-state asymmetric supercapacitors. Adv Energy Mater. https://doi.org/10.1002/aenm.201600755
Zhang Y, Hao N, Lin X, Nie S (2020) Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: a review. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.115888
Zdrojek M (2021) Heat management with a twist in layered materials. Nat Int Weekly J Sci 597:637–638
Cheng Z, Bai T, Shi J, Feng T, Wang Y, Mecklenburg M, Li C, Hobart KD, Feygelson TI, Tadjer MJ, Pate BB, Foley BM, Yates L, Pantelides ST, Cola BA, Goorsky M, Graham S (2019) Tunable thermal energy transport across diamond membranes and diamond-Si interfaces by nanoscale graphoepitaxy. ACS Appl Mater Interfaces 11(20):18517–18527. https://doi.org/10.1021/acsami.9b02234
Graebner JE, Jin S, Kammlott GW, Herb JA, Gardinier CF (1992) Unusually high thermal conductivity in diamond films. Appl Phys Lett 60(13):1576–1578. https://doi.org/10.1063/1.107256
Tan Z, Li Z, Fan G, Kai X, Ji G, Zhang L, Zhang D (2013) Fabrication of diamond/aluminum composites by vacuum hot pressing: process optimization and thermal properties. Compos B Eng 47:173–180. https://doi.org/10.1016/j.compositesb.2012.11.014
Wei L, Kuo PK, Thomas RL, Anthony TR, Banholzer WF (1993) Thermal conductivity of isotopically modified single crystal diamond. Phys Rev Lett 70(24):3764–3767
Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: fundamentals and applications. MRS Bull 37(12):1273–1281. https://doi.org/10.1557/mrs.2012.203
Mashali F, Languri E, Mirshekari G, Davidson J, Kerns D (2019) Nanodiamond nanofluid microstructural and thermo-electrical characterization. Int Commun Heat Mass Transfer 101:82–88. https://doi.org/10.1016/j.icheatmasstransfer.2019.01.007
Angadi MA, Watanabe T, Bodapati A, Xiao X, Auciello O, Carlisle JA, Eastman JA, Keblinski P, Schelling PK, Phillpot SR (2006) Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films. J Appl Phys. https://doi.org/10.1063/1.2199974
Anaya J, Rossi S, Alomari M, Kohn E, Tóth L, Pécz B, Hobart KD, Anderson TJ, Feygelson TI, Pate BB, Kuball M (2016) Control of the in-plane thermal conductivity of ultra-thin nanocrystalline diamond films through the grain and grain boundary properties. Acta Mater 103:141–152. https://doi.org/10.1016/j.actamat.2015.09.045
Liu D, Francis D, Faili F, Middleton C, Anaya J, Pomeroy JW, Twitchen DJ, Kuball M (2016) Impact of diamond seeding on the microstructural properties and thermal stability of GaN-on-diamond wafers for high-power electronic devices. Scr Mater 128:57–60
Ralchenko V, Nistor L, Pleuler E, Khomich A, Vlasov I, Khmelnitskii R (2003) Structure and properties of high-temperature annealed CVD diamond. Diam Relat Mater 12:1964–1970. https://doi.org/10.1016/S0925-9635Ž03.00214-0
Goodson KE, Käding OW, Rösler M, Zachai R (1995) Experimental investigation of thermal conduction normal to diamond-silicon boundaries. J Appl Phys 77(4):1385–1392. https://doi.org/10.1063/1.358950
Popov C, Kulisch W, Jelinek M, Bock A, Strnad J (2006) Nanocrystalline diamond/amorphous carbon composite films for applications in tribology, optics and biomedicine. Thin Solid Films 494:92–97. https://doi.org/10.1016/j.tsf.2005.07.163
Kolodziej T, Vodnala P, Terentyev S, Blank V, Shvyd’Ko Y (2016) Diamond drumhead crystals for X-Ray optics applications. J Appl Crystallogr 49(4):1240–1244. https://doi.org/10.1107/S1600576716009171
Koidp P, Klages C-P (1992) Optical applications of polycrystalline diamond. Diam Relat Mater 1(10–11):1065–1074
Guillén FJH, Janischowsky K, Kusterer J, Ebert W, Kohn E (2005) Mechanical characterization and stress engineering of nanocrystalline diamonds films for MEMS applications. Diam Related Mater 14:411–415. https://doi.org/10.1016/j.diamond.2004.12.061
Murakawa M, Takeuchi S (1991) Mechanical applications of thin and thick diamond films. Surf Coat Technol 49:359–365
Espinosa HD, Peng B, Kim K-H, Prorok BC, Moldovan N, Xiao XC, Gerbi JE, Birrell J, Auciello O, Carlisle JA, Gruen DM, Mancini DC (2002) Mechanical properties of ultrananocrystalline diamond thin films for MEMS applications. MRS Proc 741:J9.2.1-J9.2.6
Rath, P.; Ummethala, S.; Nebel, C.; Pernice, W. H. P. (2015) Diamond as a Material for Monolithically Integrated Optical and Optomechanical Devices. Physica Status Solidi (A) Applications and Materials Science , 2s12 (11), 2385–2399. https://doi.org/10.1002/pssa.201532494.
Shamsa M, Ghosh S, Calizo I, Ralchenko V, Popovich A, Balandin AA (2008) Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon. J Appl Phys. https://doi.org/10.1063/1.2907865
Via G. D.; Felbinger, J. G.; Blevins, J.; Chabak, K.; Jessen, G.; Gillespie, J.; Fitch, R.; Crespo, A.; Sutherlin, K.; Poling, B.; Tetlak, S.; Gilbert, R.; Cooper, T.; Baranyai, R.; Pomeroy, J. W.; Kuball, M.; Maurer, J. J.; Bar-Cohen, A. (2014) Wafer-scale GaN HEMT performance enhancement by diamond substrate integration. Physica Status Solidi (C) Curr Top Solid State Phys; 11 (3–4), 871–874. https://doi.org/10.1002/pssc.201300504.
Nazari M, Hancock BL, Anderson J, Hobart KD, Feygelson TI, Tadjer MJ, Pate BB, Anderson TJ, Piner EL, Holtz MW (2017) Optical characterization and thermal properties of CVD diamond films for integration with power electronics. Solid State Electron 136:12–17. https://doi.org/10.1016/j.sse.2017.06.025
Anderson TJ, Hobart KD, Tadjer MJ, Koehler AD, Feygelson TI, Pate BB, Hite JK, Kub FJ, Eddy CR (2014) Advances in diamond integration for thermal management in GaN power HEMTs. ECS Trans 64(7):185–190. https://doi.org/10.1149/06407.0185ecst
Graebner JE, Jin S, Kammlott GW, Herb JA, Gardinier CF (1992) Large anisotropic thermal in synthetic films. Nature 359(6394):401–403
Yang Q, Zhao J, Huang Y, Zhu X, Fu W, Li C, Miao J (2019) A Diamond made microchannel heat sink for high-density heat flux dissipation. Appl Therm Eng 158:113804–113804. https://doi.org/10.1016/j.applthermaleng.2019.113804
Guo Z, Bai H, Zhao X, Wang K, Guo R, Tian Y, Wang H (2022) The influence of nitrogen doping on the thermal conductivity of diamond heat sink. Spectrosc Lett 55(3):166–171
Cho HJ, Yan D, Tam J, Erb U (2019) Effects of diamond particle size on the formation of copper matrix and the thermal transport properties in electrodeposited copper-diamond composite materials. J Alloys Compd 791:1128–1137. https://doi.org/10.1016/j.jallcom.2019.03.347
Osipov AS, Klimczyk P, Rutkowski P, Melniychuk YA, Romanko LO, Podsiadlo M, Petrusha IA, Jaworska L (2021) Diamond composites of high thermal conductivity and low dielectric loss tangent. Mater Sci Eng B 269:115171. https://doi.org/10.1016/j.mseb.2021.115171
Lu YJ, Lin CN, Shan CX (2018) Optoelectronic diamond: growth, properties, and photodetection applications. Adv Opt Mater. https://doi.org/10.1002/adom.201800359
Massie LD (1991) Future trends in space power technology. IEEE Aerosp Electron Syst Mag 6(11):8–13
Verhoeven H, Flöter A, Reiß H, Zachai R, Wittorf D, Jäger W (1997) Influence of the microstructure on the thermal properties of thin polycrystalline diamond films. Appl Phys Lett 71(10):1329–1331. https://doi.org/10.1063/1.119886
Railkar TA, Kang WP, Windischmann H, Malshe AP, Naseem HA, Davidson JL, Brown WD (2000) A critical review of chemical vapor-deposited (CVD) diamond for electronic applications. Crit Rev Solid State Mater Sci 25(3):163–277. https://doi.org/10.1080/10408430008951119
Spitsyn BV, Bouilov LL, Derjaguin BV (1981) Vapor growth of diamond on diamond and other surfaces. J Cryst Growth 52:219–226
Yan C-S, Vohra YK, Mao H-K, Hemley RJ (2002) Very high growth rate chemical vapor deposition of single-crystal diamond. Jpn J Appl Phys 99(20):12523–12525
Eversole WG (1962) United States Patent
Das D, Singh RN, Chattopadhyay S, Chen KH (2006) Thermal conductivity of diamond films deposited at low surface temperatures. J Mater Res 21(9):2379–2388. https://doi.org/10.1557/jmr.2006.0286
Anaya J, Bai T, Wang Y, Li C, Goorsky M, Bougher TL, Yates L, Cheng Z, Graham S, Hobart KD, Feygelson TI, Tadjer MJ, Anderson TJ, Pate BB, Kuball M (2017) Simultaneous determination of the lattice thermal conductivity and grain/grain thermal resistance in polycrystalline diamond. Acta Mater 139:215–225. https://doi.org/10.1016/j.actamat.2017.08.007
Jiang X, Fryda M, Jia CL (2000) High quality heteroepitaxial diamond films on silicon: recent progresses. Diam Relat Mater 9:1640–1645
Tiwari RN, Tiwari JN, Chang L, Yoshimura M (2011) Enhanced nucleation and growth of diamond film on Si by CVD using a chemical precursor. J Phys Chem C 115(32):16063–16073. https://doi.org/10.1021/jp2041179
Wurzinger P, Fuchs N, Schreck HeBmer MR, Stritzker B (1997) TEM Investigations on the heteroepitaxial nucleation of CVD diamond on (001) silicon substrates. Diam Relat Mater 6:752–757
Wurzinger P, Ehrhardt H (1996) Diamond and related materials bias-enhanced diamond nucleation on silicon a TEM Study
Stoner BR, Ma G-HM, Wolter SD, Glass JT (1992) Characterization of bias-enhanced nucleation of diamond on silicon by in vacuo surface analysis and transmission electron microscopy. Phys Rev B 45(19):11067–11084
Salvatori S, Pettinato S, Piccardi A, Sedov V, Voronin A, Ralchenko V (2020) Thin diamond film on silicon substrates for pressure sensor fabrication. Materials. https://doi.org/10.3390/MA13173697
Ding M, Liu Y, Lu X, Tang W (2019) Effect of laser ablation on microwave attenuation properties of diamond films. Materials. https://doi.org/10.3390/ma12223700
Mallik AK, Binu SR, Satapathy LN, Narayana C, Seikh M, Shivashankar SA, Biswas SK (2010) Effect of substrate roughness on growth of diamond by hot filament CVD. Bull Mater Sci 33(3):251–255
Neto MA, Silva EL, Fernandes AJS, Oliveira FJ, Silva RF (2012) Diamond/WC bilayer formation mechanism by hot-filament CVD. Surf Coat Technol 206(13):3055–3063. https://doi.org/10.1016/j.surfcoat.2011.12.005
Yang S, He Z, Li Q, Zhu D, Gong J (2008) Diamond films with preferred <110> texture by hot filament CVD at low pressure. Diam Relat Mater 17(12):2075–2079. https://doi.org/10.1016/j.diamond.2008.07.005
Hamzah E, Yong TM, Mat Yajid MA (2013) Surface morphology and bond characterization of nanocrystalline diamonds grown on tungsten carbide via hot filament chemical vapor deposition. J Cryst Growth 372:109–115. https://doi.org/10.1016/j.jcrysgro.2013.02.009
Amaral M, Mohasseb F, Oliveira FJ, Bénédic F, Silva RF, Gicquel A (2005) Nanocrystalline diamond coating of silicon nitride ceramics by microwave plasma-assisted CVD. Thin Solid Films 482(1–2):232–236. https://doi.org/10.1016/j.tsf.2004.11.140
Almeida FA, Salgueiredo E, Oliveira FJ, Silva RF, Baptista DL, Peripolli SB, Achete CA (2013) Interfaces in nano-/microcrystalline multigrade CVD diamond coatings. ACS Appl Mater Interfaces 5(22):11725–11729. https://doi.org/10.1021/am403401s
Belmonte M, Oliveira FJ, Sacramento J, Fernandes AJS, Silva RF (2004) Cutting forces evolution with tool wear in sintered hardmetal turning with CVD diamond. Diam Relat Mater 13(4–8):843–847. https://doi.org/10.1016/j.diamond.2003.11.018
Abreu CS, Oliveira FJ, Belmonte M, Fernandes AJS, Silva RF, Gomes JR (2005) Grain size effect on self-mated CVD diamond dry tribosystems. Wear 259(1–6):771–778. https://doi.org/10.1016/j.wear.2005.01.004
Cui JB, Ma YR, Zhang JF, Chen H, Fang RC (1996) Growth and characterization of diamond film on aluminum nitride. Mater Res Bull 31(7):781–785
Krauss AR, Auciello O, Gruen DM, Jayatissa A, Sumant A, Tucek J, Mancini DC, Moldovan N, Erdemir A, Ersoy D, Gardos MN, Busmann HG, Meyer EM, Ding MQ (1998) Ultrananocrystalline diamond thin films for MEMS andmoving mechanical assembly devices. Diam Relat Mater 10:1925–1961
Mandal S, Bland HA, Cuenca JA, Snowball M, Williams OA (2019) Superconducting boron doped nanocrystalline diamond on boron nitride ceramics. Nnaoscale 11:10266–10272
Bhusari DM, Yang JR, Wang TY, Chen KH, Lin ST, Chen LC (1998) Novel two stage method for growth of highly transparent nano-crystalline diamond films. Mater Lett 36:279–283
Chen LC, Wang TY, Yang JR, Chen KH, Bhusari DM, Chang YK, Hsieh HH, Pong WF (2000) Growth, characterization, optical and X-ray absorption studies of nano-crystalline diamond films. Diam Relat Mater 9:887–882
Chen KH, Bhusari DM, Yang JR, Lin ST, Wang TY, Chen LC (1998) Highly transparent nano-crystalline diamond films via substrate pretreatment and methane fraction optimization. Thin Solid Films 332:34–39
Bhusari DM, Yang JR, Wang TY, Lin ST, Chen KH, Chen LC (1998) Highly transparent nano-crystalline diamond films grown by microwave CVD. Solid Stale Commun 107(6):301–305
Matsumoto S, Sato Y, Kamo M, Setaka N (1982) Vapor deposition of diamond particles from methane. Jpn J Appl Phys 21(4):183–185
Ma Y, Tong J, Zhuang M, Liu J, Cheng S, Pei X, Li H, Sang D (2019) Superhydrophilic Surface of oxidized freestanding CVD diamond films: preparation and application to test solution conductivity. Results Phys 15:102628. https://doi.org/10.1016/j.rinp.2019.102628
Srikanth VVSS (2012) Review of advances in diamond thin film synthesis. Proc Inst Mech Eng C J Mech Eng Sci 226(2):303–318. https://doi.org/10.1177/0954406211422788
Gruen DM (1998) Nucleation, growth, and microstructure of nanocrystalline diamond films. MRS Bull 23(9):32–35. https://doi.org/10.1557/S088376940002933X
Gicquel A, Hassouni K, Achard J (2001) CVD diamond films: from growth to applications. Curr Appl Phys 6:479–496
Butler JE, Woodin RL (1993) Thin film diamond growth mechanisms. Philos Trans R Soc Lond A 342:209–224
Hirose Y, Terasawa Y (1986) Synthesis of diamond thin films by thermal CVD using organic compounds. Jpn J Appl Phys 25(6):519–521
Shimizu K, Einaga Y, Fujishima A, Ohnishi K (2002) Radio frequency GDOES depth profiling analysis of a B-doped diamond film deposited onto Si by microwave plasma CVD. Surf Interface Anal 33(1):35–40. https://doi.org/10.1002/sia.1158
Matsumoto S, Tsutsumi M, Setaka N (1982) Growth of diamond particles from methane-hydrogen gas. J Mater Sci 17(11):3106–3112
Li H, Lee HJ, Park JK, Baik YJ, Hwang GW, Jeong JH, Lee WS (2009) Control of abnormal grain inclusions in the nanocrystalline diamond film deposited by hot filament CVD. Diam Relat Mater 18(11):1369–1374. https://doi.org/10.1016/j.diamond.2009.08.009
Haubner R, Lux B (1993) Diamond growth by hot-filament chemical vapor deposition: state of the art. Diam Relat Mater 2:1277–1294
Chen C-F, Huang YC, Hosomi S, Yoshida I (1989) Effect of oxygen addition on microwave plasma CVD of diamond from CH4-H2 mixture. Mat. Res. Bull 24:87–94
Hirmke J, Schwarz S, Rottmair C, Rosiwal SM, Singer RF (2006) Diamond single crystal growth in hot filament CVD. Diam Relat Mater 15(4–8):536–541. https://doi.org/10.1016/j.diamond.2006.01.003
He XC, Zhang ZM, Shen HS, Li GY (1996) Surface structure characterization of WC-Co substrate by hot filament radiation in diamond film growth. Diam Relat Mater 5:83–85
Soto G, Silva G, Contreras O (2006) A Study on the flexibility of the hot-filament configuration and its implementation for diamond, boron carbide and ternary alloys deposition. Surf Coat Technol 201(6):2733–2740. https://doi.org/10.1016/j.surfcoat.2006.05.014
Bohr S, Haubner R, Lux B (1995) Influence of phosphorus addition on diamond CVD. Diam Relat Mater 4:133–144
Uppireddi K, Weiner BR, Morell G (2008) Synthesis of nanocrystalline diamond films by DC plasma-assisted argon-rich hot filament chemical vapor deposition. Diam Relat Mater 17(1):55–59. https://doi.org/10.1016/j.diamond.2007.10.012
Alcantar-Peña JJ, de Obaldia E, Tirado P, Arellano-Jimenez MJ, Ortega Aguilar JE, Veyan JF, Yacaman MJ, Koudriavtsev Y, Auciello O (2019) Polycrystalline diamond films with tailored micro/nanostructure/doping for new large area film-based diamond electronics. Diam Relat Mater 91:261–271. https://doi.org/10.1016/j.diamond.2018.11.028
Wohle J, Gebauer-Teichmann A, Rie K-T (2001) Comparison of radio frequency and pulsed-d.c. plasma CVD of Ti-C-N-H and Zr-C-N-H layers at low temperature. Surf Coat Technol 142:661–664
Shigeta M, Murphy AB (1993) Large-area high-speed diamond deposition by Rf induction thermal plasma chemical vapor deposition method. Jpn J Appl Phys 32:438–440
Lue J-T, Chen S-Y, Chen C-L, Lin M-C (2000) Field emission studies of diamond-like films grown by RFCVD. J Non Cryst Solids 265(3):230–237
Popov C, Kulisch W, Gibson PN, Ceccone G, Jelinek M (2004) Growth and characterization of nanocrystalline diamond/amorphous carbon composite films prepared by MWCVD. Diam Relat Mater 13(4–8):1371–1376. https://doi.org/10.1016/j.diamond.2003.11.040
Popov C, Jelinek M, Boycheva S, Vorlicek V, Kulisch W (2005) Influence of the gas phase composition on nanocrystalline diamond films prepared by MWCVD. J Metastable Nanocryst Mater 23:31–34. https://doi.org/10.4028/www.scientific.net/JMNM.23.31
Chu, Y.-C.; Jiang, G.; Chang, C.; Ting, J.-M.; Lee, H.-L. (2011) Tzeng, Y. Room-temperature diamond seeding and microwave plasma enhanced CVD growth of nanodiamond with a tungsten interfacial layer. In: 2011 11th IEEE international conference on nanotechnology; pp 1367–1370. https://doi.org/10.1109/NANO.2011.6144477
Badzian AR (1988) Crystallization of diamond from the gas phase; part 1 73–70. Mater Res Bull 23:385–400
Beckmann R, Sobisch B, Kulisch W (1995) On the gas-phase mechanisms in MWCVD and HFCVD diamond deposition. Diam Relat Mater 4:256–260
Zalieckas J, Pobedinskas P, Greve MM, Eikehaug K, Haenen K, Holst B (2021) Large area microwave plasma CVD of diamond using composite right/left-handed materials. Diam Relat Mater. https://doi.org/10.1016/j.diamond.2021.108394
Rodin D, Yee SK (2017) Simultaneous measurement of in-plane and through-plane thermal conductivity using beam-offset frequency domain thermoreflectance. Rev Sci Instrum. https://doi.org/10.1063/1.4973297
Zhao D, Qian X, Gu X, Jajja SA, Yang R (2016) Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J Electron Packag Trans ASME. https://doi.org/10.1115/1.4034605
Cahill DG (2018) Thermal-conductivity measurement by time-domain thermoreflectance. MRS Bull 43(10):768–774. https://doi.org/10.1557/mrs.2018.209
Gaskins JT, Kotsonis G, Giri A, Ju S, Rohskopf A, Wang Y, Bai T, Sachet E, Shelton CT, Liu Z, Cheng Z, Foley B, Graham S, Luo T, Henry A, Goorsky MS, Shiomi J, Maria J-P, Hopkins PE (2018) Thermal boundary conductance across heteroepitaxial ZnO/GaN interfaces: assessment of the phonon gas model. Nano Lett 18(12):7469–7477
Cheng Z, Bougher T, Bai T, Wang SY, Li C, Yates L, Foley BM, Goorsky M, Cola BA, Faili F, Graham S (2018) Probing growth-induced anisotropic thermal transport in high-quality CVD diamond membranes by multifrequency and multiple-spot-size time-domain thermoreflectance. ACS Appl Mater Interfaces 10(5):4808–4815. https://doi.org/10.1021/acsami.7b16812
Kang K, Koh YK, Chiritescu C, Zheng X, Cahill DG (2008) Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters. Rev Sci Instrum. https://doi.org/10.1063/1.3020759
Liu J, Zhu J, Tian M, Gu X, Schmidt A, Yang R (2013) Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method. Rev Sci Instrum. https://doi.org/10.1063/1.4797479
Mansour M, Kocer G, Lenherr C, Chokani N, Abhari RS (2011) Seven-sensor fast-response probe for full-scale wind turbine flowfield measurements. J Eng Gas Turbine Power, DOI 10(1115/1):4002781
Yang ZH (2017) The comparison of the 3ω method and the laser flash thermal measurement. https://escholarship.org/uc/item/3rs9w4h5.
Zhang D (2018) Thermal properties on anisotropic thin film materials. https://digitalcommons.usu.edu/etd/7356
Jiang P, Qian X, Yang R (2017) Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach. Rev Sci Instrum. https://doi.org/10.1063/1.4991715
Brown DB, Bougher TL, Cola BA, Kumar S (2018) Oxidation limited thermal boundary conductance at metal-graphene interface. Carbon N Y 139:913–921. https://doi.org/10.1016/j.carbon.2018.08.002
Chen G (2005) Nanoscale energy transport and conversion, 1st edn. Oxford University Press, England
Casimir HBG (1938) Note on conduction of heat in crystals. Physica 6:495–499
Rossi S, Alomari M, Zhang Y, Bychikhin S, Pogany D, Weaver JMR, Kohn E (2013) Thermal analysis of submicron nanocrystalline diamond films. Diam Relat Mater 40:69–74. https://doi.org/10.1016/j.diamond.2013.10.004
Yamamoto Y, Imai T, Tanabe K, Tsuno T, Kumazawa Y, Fujimori N (1997) The measurement of thermal properties of diamond. Diam Relat Mater 6:1057–1061
Jiang P, Qian X, Yang R (2018) Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J Appl Phys 10(1063/1):5046944
Stephens AW, Vossen JL (1998) Measurement of interfacial bond strength by laser spallation. J Vac Sci Technol 13(1):38. https://doi.org/10.1116/1.568925
Cui Y, Li M, Hu Y (2020) Emerging interface materials for electronics thermal management: experiments, modeling, and new opportunities. J Mater Chem C R Soc Chem. https://doi.org/10.1039/c9tc05415d
Farimani M (2016) High-accuracy thermal-conductivity characterisation of thin-film/substrate systems and interfaces by modified 3-omega method. https://doi.org/10.26190/unsworks/2954.
Sood A, Cho J, Hobart KD, Feygelson TI, Pate BB, Asheghi M, Cahill DG, Goodson KE (2016) Anisotropic and inhomogeneous thermal conduction in suspended thin-film polycrystalline diamond. J Appl Phys. https://doi.org/10.1063/1.4948335
Graebner JE, Mucha JA, Seibles L, Kammlott GW (1992) The thermal conductivity of chemical-vapor-deposited diamond films on silicon. J Appl Phys 71(7):3143–3146. https://doi.org/10.1063/1.350981
Yates L, Cheng Z, Bai T, Hobart K, Tadjer M, Feygelson TI, Pate BB, Goorsky M, Graham S, Woodruff GW (2021) Simultaneous evaluation of heat capacity and in-plane thermal conductivity of nanocrystalline diamond thin films. Nanoscale Microscale Thermophys Eng 25(3–4):166–178
Morelli DT, Beetz CP, Perry TA (1988) Thermal conductivity of synthetic diamond films. J Appl Phys 64(6):3063–3066. https://doi.org/10.1063/1.341571
Mohr M, Daccache L, Horvat S, Brühne K, Jacob T, Fecht HJ (2017) Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films. Acta Mater 122:92–98. https://doi.org/10.1016/j.actamat.2016.09.042
Goyal V, Kotchetkov D, Subrina S, Rahman M, Balandin AA (2010) Thermal conduction through diamond - silicon heterostructures. In: 12th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems; IEEE, pp 1–6
Cheng Z, Mu F, Yates L, Suga T, Graham S (2020) Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices. ACS Appl Mater Interfaces 12(7):8376–8384. https://doi.org/10.1021/acsami.9b16959
Pomeroy JW, Bernardoni M, Dumka DC, Fanning DM, Kuball M (2014) Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional raman thermography mapping. Appl Phys Lett. https://doi.org/10.1063/1.4865583
Dumka DC, Chou TM, Jimenez ZL, Fannin DM, Francis DG, Faili F, Ejeckam F, Bernardoni M, Pomeroy JW, Kuball M (2013) Electrical and thermal performance of AlGaN/GaN HEMTs on diamond substrate for RF applications. In: IEEE Compound semiconductor integrated circuit symposium (CSIC); IEEE, pp 1–4
Cho J, Won Y., Asheghi M., Goodson KE, Francis D (2014) Thermal interface resistance measurements for GaN-on-diamond composite substrates. In: IEEE compound semiconductor integrated circuit symposium (CSIC), pp 1–4
Sun H, Simon RB, Pomeroy JW, Francis D, Faili F, Twitchen DJ, Kuball M (2015) Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. Appl Phys Lett. https://doi.org/10.1063/1.4913430
Zhou Y, Anaya J, Pomeroy J, Sun H, Gu X, Xie A, Beam E, Becker M, Grotjohn TA, Lee C, Kuball M (2017) Barrier-layer optimization for enhanced GaN-on-diamond device cooling. ACS Appl Mater Interfaces 9(39):34416–34422. https://doi.org/10.1021/acsami.7b08961
Yates L, Anderson J, Gu X, Lee C, Bai T, Mecklenburg M, Aoki T, Goorsky MS, Kuball M, Piner EL, Graham S (2018) Low thermal boundary resistance interfaces for GaN-on-diamond devices. ACS Appl Mater Interfaces 10(28):24302–24309. https://doi.org/10.1021/acsami.8b07014
Yang H-S, Bai G-R, Thompson LJ, Eastman JA (2002) Interfacial thermal resistance in nanocrystalline Yttria-stabilized zirconia. Acta Mater 50(9):2309–2317
Wei L, Kuo PK, Thomas RL, Anthony TR, Banholzer WF (1993) Thermal conductivity of isotopically modified single crystal diamond. Phys Rev Lett 70:3764–3767
Inyushkin A, Taldenkov AN, Ralchenko VG, Bolshakov AP, Koliadin A, Katrusha AN (2018) Thermal conductivity of high purity synthetic single crystal diamonds. Phys Rev B. https://doi.org/10.1103/PhysRevB.97.144305
DeCoster ME, Meyer KE, Piercy BD, Gaskins JT, Donovan BF, Giri A, Strnad NA, Potrepka DM, Wilson AA, Losego MD, Hopkins PE (2018) Density and size effects on the thermal conductivity of atomic layer deposited TiO2 and Al2O3 thin films. Thin Solid Films 650:71–77. https://doi.org/10.1016/j.tsf.2018.01.058
Kühnel F, Metzke C, Weber J, Schätz J, Duesberg GS, Benstetter G (2022) Investigation of heater structures for thermal conductivity measurements of SiO2 and Al2O3 thin films using the 3-omega method. Nanomaterials. https://doi.org/10.3390/nano12111928
Paterson J, Singhal D, Tainoff D, Richard J, Bourgeois O (2020) Thermal conductivity and thermal boundary resistance of amorphous Al2O3 thin films on germanium and sapphire. J Appl Phys. https://doi.org/10.1063/5.0004576
Lee SM, Cahill DG (1997) Influence of interface thermal conductance on the apparent thermal conductivity of thin films. Microscale Thermophys Eng 1(1):47–52. https://doi.org/10.1080/108939597200421
Zhang X, Grigoropoulos CP (1995) Thermal conductivity and diffusivity of free-standing silicon nitride thin films. Rev Sci Instrum 66(2):1115–1120. https://doi.org/10.1063/1.1145989
Bogner M, Hofer A, Benstetter G, Gruber H, Fu RYQ (2015) Differential 3ω method for measuring thermal conductivity of AIN and Si3N4 thin films. Thin Solid Films 591:267–270. https://doi.org/10.1016/j.tsf.2015.03.031
Choi SR, Kim D, Choa SH, Lee SH, Kim JK (2006) Thermal conductivity of AlN and SiC thin films. Int J Thermophys 27(3):896–905. https://doi.org/10.1007/s10765-006-0062-1
Alomari M, Dipalo M, Rossi S, Diforte-Poisson MA, Delage S, Carlin JF, Grandjean N, Gaquiere C, Toth L, Pecz B, Kohn E (2011) Diamond overgrown InAlN/GaN HEMT. Diam Relat Mater 20(4):604–608. https://doi.org/10.1016/j.diamond.2011.01.006
Anderson TJ, Koehler AD, Hobart KD, Tadjer MJ, Feygelson TI, Hite JK, Pate BB, Kub FJ, Eddy CR (2013) Nanocrystalline diamond-gated AlGaN/GaN HEMT. IEEE Electron Device Lett 34(11):1382–1384. https://doi.org/10.1109/LED.2013.2282968
Labudovic M, Burka M (2003) Heat transfer and residual stress modeling of a diamond film heat sink for high power laser diodes. IEEE Trans Compon Packag Technol 26(3):575–581. https://doi.org/10.1109/TCAPT.2003.817649
Rath P, Khasminskaya S, Nebel C, Wild C, Pernice WHP (2013) ARTICLE diamond-integrated optomechanical circuits. Nat Commun. https://doi.org/10.1038/ncomms2710
Gurbuz Y, Kang WP, Davidson JL, Kerns D (1998) High temperature tolerant diamond-based microelectronic oxygen gas sensor. Sens Actuators B 49:115–120
Peng X, Chu J, Wang L, Duan S, Feng P (2017) Boron-doped diamond nanowires for co gas sensing application. Sens Actuators B Chem 241:383–389. https://doi.org/10.1016/j.snb.2016.10.009
Kania DR, Landstrass MI, Plano MA (1993) Diamond radiation detectors. Diam Relat Mater 2:1012–1019
Kiyota H, Matsushima E, Sato K, Okushi H, Ando T, Kamo M, Sato Y, Iida M (1995) Electrical properties of Schottky barrier formed on as-grown and oxidized surface of homoepitaxially grown diamond (001) film. Appl Phys Lett 67:3596. https://doi.org/10.1063/1.115329
Zalazar M, Guarnieri F (2013) Diamond-based thin film bulk acoustic wave resonator for biomedical applications. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/477/1/012009
Hutchinson AB, Truitt PA, Schwab KC, Sekaric L, Parpia JM, Craighead HG, Butler JE (2004) Dissipation in nanocrystalline-diamond nanomechanical resonators. Appl Phys Lett 84(6):972–974. https://doi.org/10.1063/1.1646213
Auciello O, Pacheco S, Sumant A, Gudeman C, Sampath S, Datta A, Carpick RW, Adiga VP, Zurcher P, Ma Z, Yuan HC, Carlisle JA, Kabius B, Hiller J, Srinivasan S (2007) Are diamonds a MEMS’ best friend? IEEE Microwave Mag. https://doi.org/10.1109/MMM.2007.907816
Salgueiredo E, Almeida FA, Amaral M, Fernandes AJS, Costa FM, Silva RF, Oliveira FJ (2009) CVD Micro/nanocrystalline diamond (MCD/NCD) bilayer coated odontological drill bits. Diam Relat Mater 18(2–3):264–270. https://doi.org/10.1016/j.diamond.2008.08.014
Meng XM, Tang WZ, Hei LF, Li CM, Askari SJ, Chen GC, Lu FX (2008) Application of CVD nanocrystalline diamond films to cemented carbide drills. Int J Refract Metals Hard Mater 26(5):485–490. https://doi.org/10.1016/j.ijrmhm.2007.11.006
Sussmann RS, Scarsbrook GA, Wort CJH, Wood RM (1994) Laser Damage testing of CVD-grown diamond windows. Diam Relat Mater 3(9):1173–1177
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest.
Additional information
Handling Editor: Maude Jimenez.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, C., Vispute, R.D., Fu, K. et al. A review of thermal properties of CVD diamond films. J Mater Sci 58, 3485–3507 (2023). https://doi.org/10.1007/s10853-023-08232-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-023-08232-w