Skip to main content
Log in

Integration of conducting polymers with MEMS lateral comb-drive resonator via electrodeposition for VOCs detection

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Micro-electro-mechanical systems (MEMS)-based resonators have a wide range of current applications such as the detection of chemical and biological substances. Up to now, several studies have been done in the literature about the integration of conducting polymers with MEMS to design a sensing layer for the applications mentioned above. However, all studies have been carried out on the coating of MEMS cantilever which has some disadvantages for the mass sensor like position-depended sensing as a result of being not only a mechanical spring structure but also a proof mass. In this study, conductive polymers (CPs) have been coated on different MEMS lateral comb-drive resonator designs by an effortless and effective solution provided by the electrochemical polymerization technique for the first time in the literature. An aqueous dispersion of carboxymethyl cellulose (CMC) and pyrrole has been formed, and the PPy/CMC composite film has been homogeneously coated on the MEMS resonators by electrochemical polymerization. The integration of CPs with MEMS has not only benefited the mechanical advantages of the lateral resonator but also used optical, electrical, and functional properties of the CPs. To examine its utilization as a sensor, the designed resonators have been used in the detection of volatile organic compounds in open-air conditions. Due to the differences in intermolecular interaction according to the polymer and VOCs structure, discrimination and detection of the VOCs have been performed even in uncontrolled air conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kilinc N, Cakmak O, Kosemen A, Ermek E, Ozturk S, Yerli Y, Ozturk ZZ, Urey H (2014) Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application. Sens Actuators B Chem 202:357–364. https://doi.org/10.1016/j.snb.2014.05.078

    Article  CAS  Google Scholar 

  2. Timurdogan E, Alaca BE, Kavakli IH, Urey H (2011) MEMS biosensor for detection of hepatitis A and C viruses in serum. Biosens Bioelectron 28:189–194. https://doi.org/10.1016/j.bios.2011.07.014

    Article  CAS  Google Scholar 

  3. Amírola J, Rodríguez A, Castañer L, Santos JP, Gutiérrez J, Horrillo MC (2005) Micromachined silicon microcantilevers for gas sensing applications with capacitive read-out. Sens Actuators B Chem 111–112:247–253. https://doi.org/10.1016/j.snb.2005.07.053

    Article  CAS  Google Scholar 

  4. Li C-S, Li M-H, Chin C-H, Li S-S (2013) Differentially piezoresistive sensing for CMOS-MEMS resonators. J Microelectromechan Syst 22:1361–1372. https://doi.org/10.1109/JMEMS.2013.2257689

    Article  CAS  Google Scholar 

  5. Kalicinski S, Tilmans HAC, Wevers M, De Wolf I (2009) A new characterization method for electrostatically actuated resonant MEMS: determination of the mechanical resonance frequency, quality factor and dielectric charging. Sens Actuators A Phys 154:304–315. https://doi.org/10.1016/j.sna.2008.06.032

    Article  CAS  Google Scholar 

  6. Somà A, Ballestra A (2009) Residual stress measurement method in MEMS microbeams using frequency shift data. J Micromech Microeng 19:095023. https://doi.org/10.1088/0960-1317/19/9/095023

    Article  CAS  Google Scholar 

  7. Baek I-B, Byun S, Lee BK, Ryu J-H, Kim Y, Yoon YS, Jang WI, Lee S, Yu HY (2017) Attogram mass sensing based on silicon microbeam resonators. Sci Rep 7:46660. https://doi.org/10.1038/srep46660

    Article  Google Scholar 

  8. Patocka F, Schneider M, Dörr N, Schneidhofer C, Schmid U (2019) Position-dependent mass responsivity of silicon MEMS cantilevers excited in the fundamental, two-dimensional roof tile-shaped mode. J Micromech Microeng 29:045009. https://doi.org/10.1088/1361-6439/ab062a

    Article  CAS  Google Scholar 

  9. Ghatkesar MK, Barwich V, Braun T, Ramseyer J-P, Gerber C, Hegner M, Lang HP, Drechsler U, Despont M (2007) Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers. Nanotechnology 18:445502. https://doi.org/10.1088/0957-4484/18/44/445502

    Article  Google Scholar 

  10. Bayraktar E, Eroglu D, Ciftlik AT, Kulah H (2011) A MEMS based gravimetric resonator for mass sensing applications. In: IEEE 24th international conference on micro electro mechanical systems, IEEE, pp 817–820. https://doi.org/10.1109/MEMSYS.2011.5734550

  11. Eroglu D, Bayraktar E, Kulah H (2011) A laterally resonating gravimetric sensor with uniform mass sensitivity and high linearity. In: 2011 16th international solid-state sensors, actuators and microsystems conference, IEEE, pp 2255–2258. https://doi.org/10.1109/TRANSDUCERS.2011.5969332

  12. Kangül M, Aydın E, Gökçe F, Toral T, Zorlu O, Külah H (2016) Design of a resonator-on-microchannel (RoM) for gravimetric detection applications in liquid environment. Procedia Eng 168:506–509. https://doi.org/10.1016/j.proeng.2016.11.510

    Article  Google Scholar 

  13. Soganci T, Baygu Y, Kabay N, Gök Y, Ak M (2018) Comparative Investigation of peripheral and nonperipheral zinc phthalocyanine-based polycarbazoles in terms of optical, electrical, and sensing properties. ACS Appl Mater Interfaces 10:21654–21665. https://doi.org/10.1021/acsami.8b06206

    Article  CAS  Google Scholar 

  14. Soganci T, Gumusay O, Soyleyici HC, Ak M (2018) Synthesis of highly branched conducting polymer architecture for electrochromic applications. Polymer 134:187–195. https://doi.org/10.1016/j.polymer.2017.11.067

    Article  CAS  Google Scholar 

  15. Ak M, Soganci T (2019) Chapter 10. Electrochemical properties and electrochromic device applications of polycarbazole derivatives. In: Jian Wei Xu KWS, Ming Hui Chua (Ed.), Electrochromic Smart Mater. Fabr. Appl., First, The Royal Society of Chemistry 2019, London, pp 293–322. https://doi.org/10.1039/9781788016667-00293

  16. Soganci T, Soyleyici S, Soyleyici HC, Ak M (2017) Optoelectrochromic characterization and smart windows application of bi-functional amid substituted thienyl pyrrole derivative. Polymer 118:40–48. https://doi.org/10.1016/j.polymer.2017.04.060

    Article  CAS  Google Scholar 

  17. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876–921. https://doi.org/10.1016/j.progpolymsci.2007.05.012

    Article  CAS  Google Scholar 

  18. Hussain KK, Gurudatt NG, Akhtar MH, Seo K-D, Park D-S, Shim Y-B (2020) Nano-biosensor for the in vitro lactate detection using bi-functionalized conducting polymer/N, S-doped carbon; the effect of αCHC inhibitor on lactate level in cancer cell lines. Biosens Bioelectron 155:112094. https://doi.org/10.1016/j.bios.2020.112094

    Article  CAS  Google Scholar 

  19. Gustafsson G, Cao Y, Treacy GM, Klavetter F, Colaneri N, Heeger AJ (1992) Flexible light-emitting diodes made from soluble conducting polymers. Nature 357:477–479. https://doi.org/10.1038/357477a0

    Article  CAS  Google Scholar 

  20. Walker B, Kim C, Nguyen T-Q (2011) Small molecule solution-processed bulk heterojunction solar cells. Chem Mater 23:470–482. https://doi.org/10.1021/cm102189g

    Article  CAS  Google Scholar 

  21. Soganci T, Soyleyici HC, Ak M (2016) A soluble and fluorescent new type thienylpyrrole based conjugated polymer: optical, electrical and electrochemical properties. Phys Chem Chem Phys 18:14401–14407. https://doi.org/10.1039/C6CP02214F

    Article  CAS  Google Scholar 

  22. Turac E, Varol R, Ak M, Sahmetlioglu E, Toppare L (2008) Electrochemical synthesis of a water-soluble and self-doped polythiophene derivative. Des Monomers Polym 11:309–317. https://doi.org/10.1163/156855508X332469

    Article  CAS  Google Scholar 

  23. Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12:608–622. https://doi.org/10.1021/cm990537f

    Article  CAS  Google Scholar 

  24. Ak M, Cirpan A, Yılmaz F, Yağcı Y, Toppare L (2005) Synthesis and characterization of a bifunctional amido-thiophene monomer and its copolymer with thiophene and electrochemical properties. Eur Polym J 41:967–973. https://doi.org/10.1016/j.eurpolymj.2004.11.031

    Article  CAS  Google Scholar 

  25. Abidian MR, Kim D-H, Martin DC (2006) Conducting-polymer nanotubes for controlled drug release. Adv Mater 18:405–409. https://doi.org/10.1002/adma.200501726

    Article  CAS  Google Scholar 

  26. Ozturk Kirbay F, Ayranci R, Ak M, Odaci Demirkol D, Timur S (2017) Rhodamine functionalized conducting polymers for dual intention: electrochemical sensing and fluorescence imaging of cells. J Mater Chem B 5:7118–7125. https://doi.org/10.1039/C7TB01716B

    Article  CAS  Google Scholar 

  27. Hofmann AI, Östergren I, Kim Y, Fauth S, Craighero M, Yoon M-H, Lund A, Müller C (2020) All-polymer conducting fibers and 3D Prints via melt processing and templated polymerization. ACS Appl Mater Interfaces 12:8713–8721. https://doi.org/10.1021/acsami.9b20615

    Article  CAS  Google Scholar 

  28. Ak M, Durmus A, Toppare L (2007) Solid state electrochromic device applications of N-(2-(thiophen-3-yl)methylcarbonyloxyethyl) maleimide. Solid State Sci 9:843–849. https://doi.org/10.1016/j.solidstatesciences.2007.06.016

    Article  CAS  Google Scholar 

  29. Fu X, Wang JK, Ramírez-Pérez AC, Choong C, Lisak G (2020) Flexible conducting polymer-based cellulose substrates for on-skin applications. Mater Sci Eng C 108:110392. https://doi.org/10.1016/j.msec.2019.110392

    Article  CAS  Google Scholar 

  30. Ayranci R, Ak M (2016) Synthesis of a novel, fluorescent, electroactive and metal ion sensitive thienylpyrrole derivate. New J Chem 40:8053–8059. https://doi.org/10.1039/C6NJ02006B

    Article  CAS  Google Scholar 

  31. Tekbaşoğlu TY, Soganci T, Ak M, Koca A, Şener MK (2017) Enhancing biosensor properties of conducting polymers via copolymerization: synthesis of EDOT-substituted bis(2-pyridylimino)isoindolato-palladium complex and electrochemical sensing of glucose by its copolymerized film. Biosens Bioelectron 87:81–88. https://doi.org/10.1016/j.bios.2016.08.020

    Article  CAS  Google Scholar 

  32. Göktuğ Ö, Soganci T, Ak M, Şener MK (2017) Efficient synthesis of EDOT modified ABBB-type unsymmetrical zinc phthalocyanine: optoelectrochromic and glucose sensing properties of its copolymerized film. New J Chem 41:14080–14087. https://doi.org/10.1039/C7NJ03250A

    Article  Google Scholar 

  33. Roh E, Hwang B-U, Kim D, Kim B-Y, Lee N-E (2015) Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9:6252–6261. https://doi.org/10.1021/acsnano.5b01613

    Article  CAS  Google Scholar 

  34. Ghorbani Zamani F, Moulahoum H, Ak M, Odaci Demirkol D, Timur S (2019) Current trends in the development of conducting polymers-based biosensors. TrAC Trends Anal Chem 118:264–276. https://doi.org/10.1016/j.trac.2019.05.031

    Article  CAS  Google Scholar 

  35. Ak M, Yigitsoy B, Yagci Y, Toppare L (2007) Gas sensing property of a conducting copolymer. E-Polymers 7:1–8. https://doi.org/10.1515/epoly.2007.7.1.495

    Article  Google Scholar 

  36. Ayranci R, Demirkol DO, Timur S, Ak M (2017) Rhodamine-based conjugated polymers: potentiometric, colorimetric and voltammetric sensing of mercury ions in aqueous medium. Analyst 142:3407–3415. https://doi.org/10.1039/C7AN00606C

    Article  CAS  Google Scholar 

  37. Ak M, Yildiz HB, Toppare L (2014) Enzyme immobilization in a photosensitive conducting polymer bearing azobenzene in the main chain. Polym Bull 71:1827–1841. https://doi.org/10.1007/s00289-014-1157-7

    Article  CAS  Google Scholar 

  38. Ramanavicius S, Ramanavicius A (2021) Charge transfer and biocompatibility aspects in conducting polymers based enzymatic biosensors and biofuel cells. Nanomaterials 11:371. https://doi.org/10.3390/nano11020371

    Article  CAS  Google Scholar 

  39. Ramanavicius S, Ramanavicius A (2021) Conducting polymers in the design of biosensors and biofuel cells (Review). Polymers 13:49. https://doi.org/10.3390/polym13010049

    Article  CAS  Google Scholar 

  40. Ramanavicius S, Ramanavicius A (2020) Review insights in the application of stoichiometric and non-stoichiometric titanium oxides for the design of sensors for the determination of gases and VOCs (TiO2−x and TinO2n−1 vs. TiO2). Sensors 20:6833. https://doi.org/10.3390/s20236833

    Article  CAS  Google Scholar 

  41. Ramanavicius S, Tereshchenko A, Karpicz R, Ratautaite V, Bubniene U, Maneikis A, Jagminas A, Ramanavicius A (2020) TiO2-x/TiO2-structure based ‘self-heated’ sensor for the determination of some reducing gases. Sensors 20:74. https://doi.org/10.3390/s20010074

    Article  CAS  Google Scholar 

  42. Oliver Brand FJ, Dufour I, Heinrich SM (2015) Resonant MEMS: fundamentals, implementation and application, Wiley-VCH Verlag GmbH

  43. Torunbalci MM, Tatar E, Alper SE, Akin T (2011) Comparison of two alternative silicon-on-glass microfabrication processes for MEMS inertial sensors. Procedia Eng 25:900–903. https://doi.org/10.1016/j.proeng.2011.12.221

    Article  CAS  Google Scholar 

  44. Tez S, Aykutlu U, Torunbalci MM, Akin T (2015) A bulk-micromachined three-axis capacitive mems accelerometer on a single die. J Microelectromech Syst 24:1264–1274. https://doi.org/10.1109/JMEMS.2015.2451079

    Article  CAS  Google Scholar 

  45. Tez S, Akin T (2012) Comparison of two alternative fabrication processes for a three-axis capacitive MEMS accelerometer. Procedia Eng 47:342–345. https://doi.org/10.1016/j.proeng.2012.09.153

    Article  CAS  Google Scholar 

  46. Imamura G, Shiba K, Yoshikawa G, Washio T (2019) Free-hand gas identification based on transfer function ratios without gas flow control. Sci Rep 9:9768. https://doi.org/10.1038/s41598-019-46164-1

    Article  CAS  Google Scholar 

  47. Tez S, Aytaskin E (2020) Design of a MEMS-based capacitive resonator for target analyte detection. Electrica 20:41–51. https://doi.org/10.5152/electrica.2020.19054

    Article  Google Scholar 

  48. Sabry Y, Medhat M, Bourouina T, Khalil D (2012) Parameter extraction of MEMS comb-drive near-resonance equivalent circuit: physically-based technique for a unique solution. J Micro/Nanolith MEMS MOEMS. https://doi.org/10.1117/1.JMM.11.2.021205

    Article  Google Scholar 

  49. Bao M, Yang H, Yin H, Shen S (2000) Effects of electrostatic forces generated by the driving signal on capacitive sensing devices. Sens Actuators A Phys 84:213–219. https://doi.org/10.1016/S0924-4247(00)00312-5

    Article  CAS  Google Scholar 

  50. Råback P, Malinen M, Ruokolainen J, Pursula A, Zwinger T (eds) (2019) Elmer Models Manual (2022), CSC–IT Center for Science. http://www.nic.funet.fi/pub/sci/physics/elmer/doc/ElmerModelsManual.pdf

  51. Ahrens J, Geveci B, Law C (2005) ParaView: an end-user tool for large-data visualization. In: Vis. Handb., Elsevier, pp 717–731. https://doi.org/10.1016/B978-012387582-2/50038-1

  52. Naik S, Hikihara T (2011) Characterization of a MEMS resonator with extended hysteresis. IEICE Electron Express 8:291–298. https://doi.org/10.1587/elex.8.291

    Article  Google Scholar 

  53. Yamane D, Matsushima T, Konishi T, Toshiyoshi H, Masu K, Machida K (2016) A dual-axis MEMS capacitive inertial sensor with high-density proof mass. Microsyst Technol 22:459–464. https://doi.org/10.1007/s00542-015-2539-y

    Article  CAS  Google Scholar 

  54. Lee JEY, Seshia AA (2011) Direct parameter extraction in feedthrough-embedded capacitive MEMS resonators. Sens Actuators A Phys 167:237–244. https://doi.org/10.1016/j.sna.2011.02.016

    Article  CAS  Google Scholar 

  55. Reichardt C, Welton T (2010) Solvents and solvent effects in organic chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. https://doi.org/10.1002/9783527632220

Download references

Acknowledgements

This study is supported by the Scientific and Technological Research Council of Türkiye (TUBITAK) under the grant number 116E231. The authors would like to thank TUBITAK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Serdar Tez or Metin Ak.

Additional information

Handling Edtor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 705 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tez, S., Ak, M. Integration of conducting polymers with MEMS lateral comb-drive resonator via electrodeposition for VOCs detection. J Mater Sci 58, 3078–3093 (2023). https://doi.org/10.1007/s10853-023-08203-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08203-1

Navigation