Skip to main content
Log in

Construction of g-C3N4 nanoparticles modified TiO2 nanotube arrays with Z-scheme heterojunction for enhanced photoelectrochemical properties

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Constructing heterojunction structures is an effective way to produce highly efficient photocatalysts with favorable charge transfer paths. In this study, TiO2 nanotube arrays were synthesized using an electrochemical anodization method, and g-C3N4 nanoparticles were grown in situ on TiO2 nanotubes using three thermal polymerization strategies. Compared with pure TiO2, the g-C3N4/TiO2 heterojunctions exhibited different degrees of enhancement in photoelectrochemical performance under stimulated solar light. The TNT-L heterojunction fabricated by urea solution exhibited excellent photoelectrochemical (PEC) activity and followed a Z-scheme mechanism, which is beneficial for carrier separation and maintaining the original redox capacity of each component. The crystallinity, morphology, chemical composition, and optical properties of the photocatalysts were also analyzed using a series of characterization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Acar C, Dincer I, Naterer GF (2016) Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int J Energy Res 40:1449–1473

    Article  CAS  Google Scholar 

  2. Li X, Yu J, Jaroniec M (2016) Hierarchical photocatalysts. Chem Soc Rev 45:2603–2636

    Article  CAS  Google Scholar 

  3. Ye R, Fang H, Zheng YZ, Li N, Wang Y, Tao X (2016) Fabrication of CoTiO3/g-C3N4 hybrid photocatalysts with enhanced H2 evolution: Z-scheme photocatalytic mechanism insight. ACS Appl Mater Interfaces 8:13879–13889

    Article  CAS  Google Scholar 

  4. Zheng L, Ye X, Deng X, Wang Y, Zhao Y, Shi X, Zheng H (2020) Black phosphorus quantum dot-sensitized TiO2 nanotube arrays with enriched oxygen vacancies for efficient photoelectrochemical water splitting. ACS Sustain Chem Eng 8:15906–15914

    Article  CAS  Google Scholar 

  5. Xiao FX, Miao J, Tao HB, Hung SF, Wang HY, Yang HB, Chen J, Chen R, Liu B (2015) One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis. Small 11:2115–2131

    Article  CAS  Google Scholar 

  6. Wu J, Feng Y, Li D, Han X, Liu J (2019) Efficient photocatalytic CO2 reduction by P-O linked g-C3N4/TiO2-nanotubes Z-scheme composites. Energy 178:168–175

    Article  Google Scholar 

  7. Ren L, Huang S, Fan W, Liu T (2011) One-step preparation of hierarchical superparamagnetic iron oxide/graphene composites via hydrothermal method. Appl Surf Sci 258:1132–1138

    Article  CAS  Google Scholar 

  8. Wang XJ, Yang WY, Li FT, Zhao J, Liu RH, Liu SJ, Li B (2015) Construction of amorphous TiO(2)/BiOBr heterojunctions via facets coupling for enhanced photocatalytic activity. J Hazard Mater 292:126–136

    Article  CAS  Google Scholar 

  9. Wang X, Utsumi M, Yang Y, Li D, Zhao Y, Zhang Z, Feng C, Sugiura N, Cheng JJ (2015) Degradation of microcystin-LR by highly efficient AgBr/Ag3PO4/TiO2 heterojunction photocatalyst under simulated solar light irradiation. Appl Surf Sci 325:1–12

    Article  CAS  Google Scholar 

  10. Yao Y, Miao S, Liu S, Ma LP, Sun H, Wang S (2012) Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem Eng J 184:326–332

    Article  CAS  Google Scholar 

  11. Xing G, Wu B, Chen S, Chua J, Yantara N, Mhaisalkar S, Mathews N, Sum TC (2015) Interfacial electron transfer barrier at compact TiO2 /CH3 NH3 PbI3 heterojunction. Small 11:3606–3613

    Article  CAS  Google Scholar 

  12. Zhou Q, Zhao D, Sun Y, Sheng X, Zhao J, Guo J, Zhou B (2020) g-C3N4- and polyaniline-co-modified TiO2 nanotube arrays for significantly enhanced photocatalytic degradation of tetrabromobisphenol A under visible light. Chemosphere 252:126468

    Article  CAS  Google Scholar 

  13. Min Y, Qi XF, Xu Q, Chen Y (2014) Enhanced reactive oxygen species on a phosphate modified C3N4/graphene photocatalyst for pollutant degradation. CrystEngComm 16:1287

    Article  CAS  Google Scholar 

  14. Zhang L, Liu D, Guan J, Chen X, Guo X, Zhao F, Hou T, Mu X (2014) Metal-free g-C 3 N 4 photocatalyst by sulfuric acid activation for selective aerobic oxidation of benzyl alcohol under visible light. Mater Res Bull 59:84–92

    Article  CAS  Google Scholar 

  15. Zhou L, Zhang H, Ji L, Shao Y, Li Y (2014) Fe3O4/MWCNT as a heterogeneous Fenton catalyst: degradation pathways of tetrabromobisphenol A. RSC Adv 4:24900–24908

    Article  CAS  Google Scholar 

  16. Liang X, Wang G, Huo T, Dong X, Wang G, Ma H, Liang H, Zhang X (2019) Band structure modification of g-C3N4 for efficient heterojunction construction and enhanced photocatalytic capability under visible light irradiation. Catal Commun 123:44–48

    Article  CAS  Google Scholar 

  17. Wei X, Shao C, Li X, Lu N, Wang K, Zhang Z, Liu Y (2016) Facile in situ synthesis of plasmonic nanoparticles-decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution. Nanoscale 8:11034–11043

    Article  CAS  Google Scholar 

  18. Sun M, Shen S, Wu Z, Tang Z, Shen J, Yang J (2018) Rice spike-like g-C3N4/TiO2 heterojunctions with tight-binding interface by using sodium titanate ultralong nanotube as precursor and template. Ceram Int 44:8125–8132

    Article  CAS  Google Scholar 

  19. Zhang W, Song J, Wang D, Deng K, Wu J, Zhang L (2018) Dual interfacial modification engineering with p-type NiO nanocrystals for preparing efficient planar perovskite solar cells. J Mater Chem C 6:13034–13042

    Article  CAS  Google Scholar 

  20. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  Google Scholar 

  21. Nagaraja CM, Kaur M, Dhingra S (2020) Enhanced visible-light-assisted photocatalytic hydrogen generation by MoS2/g-C3N4 nanocomposites. Int J Hydrogen Energy 45:8497–8506

    Article  CAS  Google Scholar 

  22. Bashir H, Yi X, Yuan J, Yin K, Luo S (2019) Highly ordered TiO2 nanotube arrays embedded with g-C3N4 nanorods for enhanced photocatalytic activity. J Photochem Photobiol A 382:111930

    Article  CAS  Google Scholar 

  23. Wang H, Liang Y, Liu L, Hu J, Cui W (2018) Highly ordered TiO2 nanotube arrays wrapped with g-C3N4 nanoparticles for efficient charge separation and increased photoelectrocatalytic degradation of phenol. J Hazard Mater 344:369–380

    Article  CAS  Google Scholar 

  24. Lin Z, Yu B, Huang J (2020) Cellulose-derived hierarchical g-C3N4/TiO2-nanotube heterostructured composites with enhanced visible-light photocatalytic performance. Langmuir 36:5967–5978

    Article  CAS  Google Scholar 

  25. Sun B, Lu N, Su Y, Yu H, Meng X, Gao Z (2017) Decoration of TiO 2 nanotube arrays by graphitic-C 3 N 4 quantum dots with improved photoelectrocatalytic performance. Appl Surf Sci 394:479–487

    Article  CAS  Google Scholar 

  26. Alcudia-Ramos MA, Fuentez-Torres MO, Ortiz-Chi F, Espinosa-González CG, Hernández-Como N, García-Zaleta DS, Kesarla MK, Torres-Torres JG, Collins-Martínez V, Godavarthi S (2020) Fabrication of g-C3N4/TiO2 heterojunction composite for enhanced photocatalytic hydrogen production. Ceram Int 46:38–45

    Article  CAS  Google Scholar 

  27. Tiong P, Lintang HO, Endud S, Yuliati L (2015) Improved interfacial charge transfer and visible light activity of reduced graphene oxide–graphitic carbon nitride photocatalysts. RSC Adv 5:94029–94039

    Article  CAS  Google Scholar 

  28. Pandey B, Rani S, Roy SC (2020) A scalable approach for functionalization of TiO2 nanotube arrays with g-C3N4 for enhanced photo-electrochemical performance. J Alloy Compd 846:155881

    Article  CAS  Google Scholar 

  29. Athanasekou CP, Likodimos V, Falaras P (2018) Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water. J Envir Chem Eng 6:7386–7394

    Article  CAS  Google Scholar 

  30. Qing-kun X (2018) The effects of the electrochemical properties of pyrite by polypyrrole (PPy). Ferroelectrics 528:75–82

    Article  CAS  Google Scholar 

  31. Zhang SS, Tran DT (2015) Electrochemical verification of the redox mechanism of FeS2 in a rechargeable lithium battery. Electrochim Acta 176:784–789

    Article  CAS  Google Scholar 

  32. He J, Li Q, Chen Y, Xu C, Zhou K, Wang X, Zhang W, Li Y (2017) Self-assembled cauliflower-like FeS2 anchored into graphene foam as free-standing anode for high-performance lithium-ion batteries. Carbon 114:111–116

    Article  CAS  Google Scholar 

  33. Song C, Wang S, Dong W, Fang X, Shao J, Zhu J, Pan X (2016) Hydrothermal synthesis of iron pyrite (FeS 2) as efficient counter electrodes for dye-sensitized solar cells. Sol Energy 133:429–436

    Article  CAS  Google Scholar 

  34. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485–2534

    Article  CAS  Google Scholar 

  35. Xia Y, He Z, Su J, Tang B, Hu K, Lu Y, Sun S, Li X (2018) Fabrication of magnetically separable NiFe2O4/BiOI nanocomposites with enhanced photocatalytic performance under visible-light irradiation. RSC Adv 8:4284–4294

    Article  CAS  Google Scholar 

  36. Peng G, Zhang M, Deng S, Shan D, He Q, Yu G (2018) Adsorption and catalytic oxidation of pharmaceuticals by nitrogen-doped reduced graphene oxide/Fe3O4 nanocomposite. Chem Eng J 341:361–370

    Article  CAS  Google Scholar 

  37. Ye C, Li J-X, Li Z-J, Li X-B, Fan X-B, Zhang L-P, Chen B, Tung C-H, Wu L-Z (2015) Enhanced driving force and charge separation efficiency of protonated g-C3N4 for photocatalytic O2 evolution. ACS Catal 5:6973–6979

    Article  CAS  Google Scholar 

  38. Ye L, Wang D, Chen S (2016) Fabrication and enhanced photoelectrochemical performance of MoS(2)/S-doped g-C(3)N(4) heterojunction film. ACS Appl Mater Interfaces 8:5280–5289

    Article  CAS  Google Scholar 

  39. Li P, Guo J, Ji X, Xiong Y, Lai Q, Yao S, Zhu Y, Zhang Y, Xiao P (2021) Construction of direct Z-scheme photocatalyst by the interfacial interaction of WO3 and SiC to enhance the redox activity of electrons and holes. Chemosphere 282:130866

    Article  CAS  Google Scholar 

  40. Zhang F, Liu J, Yue H, Cheng G, Xue X (2021) Enhanced photo-Fenton catalytic activity by spherical FeS2 nanoparticles and photoelectric property of hybrid FeS2/rGO. Vacuum 192:110433

    Article  CAS  Google Scholar 

  41. Li X, Garlisi C, Guan Q, Anwer S, Al-Ali K, Palmisano G, Zheng L (2021) A review of material aspects in developing direct Z-scheme photocatalysts. Mater Today 47:75–107

    Article  CAS  Google Scholar 

  42. Ge L, Han C, Liu J (2011) Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl Catal B 108–109:100–107

    Article  Google Scholar 

  43. Jiang W, Zong X, An L, Hua S, Miao X, Luan S, Wen Y, Tao FF, Sun Z (2018) Consciously constructing heterojunction or direct Z-scheme photocatalysts by regulating electron flow direction. ACS Catal 8:2209–2217

    Article  CAS  Google Scholar 

  44. Di Liberto G, Tosoni S, Pacchioni G (2021) Z-Scheme versus type-II junction in g-C3N4/TiO2 and g-C3N4/SrTiO3/TiO2 heterostructures, Catalysis. Sci Technol 11:3589–3598

    Google Scholar 

  45. Li L, Li L, Sun T, Yu X, Long L, Xu L, Yan J (2019) Novel H3PW12O40/TiO2-g-C3N4 type-II heterojunction photocatalyst with enhanced visible-light photocatalytic properties. J Solid State Chem 274:152–161

    Article  CAS  Google Scholar 

  46. Xu Q, Zhang L, Yu J, Wageh S, Al-Ghamdi AA, Jaroniec M (2018) Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater Today 21:1042–1063

    Article  CAS  Google Scholar 

  47. Lu L, Wang G, Zou M, Wang J, Li J (2018) Effects of calcining temperature on formation of hierarchical TiO2/g-C3N4 hybrids as an effective Z-scheme heterojunction photocatalyst. Appl Surf Sci 441:1012–1023

    Article  CAS  Google Scholar 

  48. Wang J, Xia Y, Zhao H, Wang G, Xiang L, Xu J, Komarneni S (2017) Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Appl Catal B 206:406–416

    Article  CAS  Google Scholar 

  49. Zhu L, Li H, Xia P, Liu Z, Xiong D (2018) Hierarchical ZnO Decorated with CeO2 Nanoparticles as the Direct Z-Scheme Heterojunction for Enhanced Photocatalytic Activity. ACS Appl Mater Interfaces 10:39679–39687

    Article  CAS  Google Scholar 

  50. Wang J, Wang G, Wang X, Wu Y, Su Y, Tang H (2019) 3D/2D direct Z-scheme heterojunctions of hierarchical TiO2 microflowers/g-C3N4 nanosheets with enhanced charge carrier separation for photocatalytic H2 evolution. Carbon 149:618–626

    Article  CAS  Google Scholar 

  51. Liu J, Cheng B, Yu J (2016) A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure. Phys Chem Chem Phys 18:31175–31183

    Article  CAS  Google Scholar 

  52. Huang Z, Jia S, Wei J, Shao Z (2021) A visible light active, carbon–nitrogen–sulfur co-doped TiO2/g-C3N4 Z-scheme heterojunction as an effective photocatalyst to remove dye pollutants. RSC Adv 11:16747–16754

    Article  CAS  Google Scholar 

  53. Yang M, Liu J, Zhang X, Qiao S, Huang H, Liu Y, Kang Z (2015) C3N4-sensitized TiO2 nanotube arrays with enhanced visible-light photoelectrochemical performance. Phys Chem Chem Phys 17:17887–17893

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangxin Xue.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1901 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Liu, J., Yue, H. et al. Construction of g-C3N4 nanoparticles modified TiO2 nanotube arrays with Z-scheme heterojunction for enhanced photoelectrochemical properties. J Mater Sci 58, 2676–2688 (2023). https://doi.org/10.1007/s10853-022-07730-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07730-7

Navigation