Skip to main content

Advertisement

Log in

Preparation and characterization of amphotericin B-loaded silk fibroin nanoparticles-in situ hydrogel composites for topical ophthalmic application

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The objective of this study was to develop and characterize a novel combined systems of amphotericin B-loaded silk fibroin nanoparticles (AmB-FNPs) and in situ hydrogel for ocular administration. Three different formulations of AmB-FNPs were successfully prepared, by desolvation method, using polyethylenimine (PEI) or polyethylene glycol (PEG) as a coating polymer. All AmB-FNPs exhibited mean size of ~ 200 nm with narrow size distribution. The uncoated AmB-FNP and AmB-FNP-PEG were spherical in shape with zeta potential of ~  − 23 mV, whereas AmB-FNP-PEI exhibited cubic shape with zeta potential ~  + 36 mV. AmB was entrapped in FNPs in a partial aggregated form of AmB, which could reduce eye irritation compared to the marketed AmB deoxycholate. Then, AmB-FNPs were incorporated into two optimal thermosensitive in situ hydrogels; pluronic F127 (F127), and F127 and hyaluronic acid (F127/HA). All AmB-FNPs-in situ hydrogels exhibited homogeneous solutions with translucent light–yellow color, pH ~ 7, and osmolality of ~ 320–370 mOsmo/kg. At the ocular temperature, 35 °C, they manifested a pseudoplastic flow behavior and showed a rapid sol–gel transition within 30 s. In addition, the in vitro drug release studies showed an initial AmB burst release within 5 min. Finally, sterility test confirmed no microbial growth of all formulations. Overall results indicated that AmB-FNPs-in situ hydrogels showed satisfactory physicochemical properties as an ophthalmic formulations, which would reduce toxicity of AmB, increase precorneal residence time and improve patient compliance due to less frequent administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ezisi CN, Ogbonnaya CE, Okoye O, Ezeanosike E, Ginger-Eke H, Arinze OC (2018) Microbial keratitis-a review of epidemiology, pathogenesis, ocular manifestations, and management. Niger J Ophthalmol 26:13–23

    Article  Google Scholar 

  2. Mahmoudi S, Masoomi A, Ahmadikia K, Tabatabaei SA, Soleimani M, Rezaie S, Ghahvechian H, Banafsheafshan A (2018) Fungal keratitis: an overview of clinical and laboratory aspects. Mycoses 61(12):916–930. https://doi.org/10.1111/myc.12822

    Article  Google Scholar 

  3. Ansari Z, Miller D, Galor A (2013) Current thoughts in fungal keratitis: diagnosis and treatment. Curr Fungal Infect Rep 7(3):209–218. https://doi.org/10.1007/s12281-013-0150-110.1007/s12281-013-0150-1

    Article  Google Scholar 

  4. Austin A, Lietman T, Rose-Nussbaumer J (2017) Update on the management of infectious keratitis. Ophthalmology 124(11):1678–1689. https://doi.org/10.1016/j.ophtha.2017.05.012

    Article  Google Scholar 

  5. Cavassin FB, Baú-Carneiro JL, Vilas-Boas RR, Queiroz-Telles F (2021) Sixty years of amphotericin B: an overview of the main antifungal agent used to treat invasive fungal infections. Infect Dis Ther 10(1):115–147. https://doi.org/10.1007/s40121-020-00382-7

    Article  Google Scholar 

  6. Chhonker YS, Prasad YD, Chandasana H, Vishvkarma A, Mitra K, Shukla PK, Bhatta RS (2015) Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int J Biol Macromol 72:1451–1458. https://doi.org/10.1016/j.ijbiomac.2014.10.014

    Article  CAS  Google Scholar 

  7. Serrano DR, Ruiz-Saldaña HK, Molero G, Ballesteros MP, Torrado JJ (2012) A novel formulation of solubilised amphotericin B designed for ophthalmic use. Int J Pharm 437(1–2):80–82. https://doi.org/10.1016/j.ijpharm.2012.07.065

    Article  CAS  Google Scholar 

  8. Sharma A, Taniguchi J (2017) Review: emerging strategies for antimicrobial drug delivery to the ocular surface: Implications for infectious keratitis. Ocul Surf 15(4):670–679. https://doi.org/10.1016/j.jtos.2017.06.001

    Article  Google Scholar 

  9. Hartsel SC, Bauer E, Kwong EH, Wasan KM (2001) The effect of serum albumin on amphotericin B aggregate structure and activity. Pharm Res 18(9):1305–1309. https://doi.org/10.1023/a:1013090011952

    Article  CAS  Google Scholar 

  10. Adler-Moore JP, Proffitt RT (2008) Amphotericin B lipid preparations: what are the differences? Clin Microbiol Infect 14(Suppl 4):25–36. https://doi.org/10.1111/j.1469-0691.2008.01979.x

    Article  CAS  Google Scholar 

  11. Patel A, Cholkar K, Agrahari V, Mitra AK (2013) Ocular drug delivery systems: an overview. World J Pharmacol 2(2):47–64. https://doi.org/10.5497/wjp.v2.i2.47

    Article  CAS  Google Scholar 

  12. Tsai CH, Wang PY, Lin IC, Huang H, Liu GS, Tseng CL (2018) Ocular drug delivery: role of degradable polymeric nanocarriers for ophthalmic application. Int J Mol Sci 19(9):2830. https://doi.org/10.3390/ijms19092830

    Article  CAS  Google Scholar 

  13. Destruel P-L, Zeng N, Maury M, Mignet N, Boudy V (2017) In vitro and in vivo evaluation of in situ gelling systems for sustained topical ophthalmic delivery: state of the art and beyond. Drug Discov 22(4):638–651. https://doi.org/10.1016/j.drudis.2016.12.008

    Article  CAS  Google Scholar 

  14. Das S, Suresh PK (2011) Nanosuspension: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to amphotericin B. Nanomedicine: Nanotechnol Biol Med 7(2):242–247. https://doi.org/10.1016/j.nano.2010.07.003

    Article  CAS  Google Scholar 

  15. Fu T, Yi J, Lv S, Zhang B (2017) Ocular amphotericin B delivery by chitosan-modified nanostructured lipid carriers for fungal keratitis-targeted therapy. J Liposome Res 27(3):228–233. https://doi.org/10.1080/08982104.2016.1224899

    Article  CAS  Google Scholar 

  16. Almeida H, Amaral MH, Lobão P, Lobo JMS (2014) In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov 19(4):400–412. https://doi.org/10.1016/j.drudis.2013.10.001

    Article  CAS  Google Scholar 

  17. Yang P, Dong Y, Huang D, Zhu C, Liu H, Pan X, Wu C (2019) Silk fibroin nanoparticles for enhanced bio-macromolecule delivery to the retina. Pharm Dev Technol 24(5):575–583. https://doi.org/10.1080/10837450.2018.1545236

    Article  CAS  Google Scholar 

  18. Pham DT, Tiyaboonchai W (2020) Fibroin nanoparticles: a promising drug delivery system. Drug Deliv 27(1):431–448. https://doi.org/10.1080/10717544.2020.1736208

    Article  CAS  Google Scholar 

  19. Chomchalao P, Nimtrakul P, Pham DT, Tiyaboonchai W (2020) Development of amphotericin B-loaded fibroin nanoparticles: a novel approach for topical ocular application. J Mater Sci 55(12):5268–5279. https://doi.org/10.1007/s10853-020-04350-x

    Article  CAS  Google Scholar 

  20. Nikogeorgos N, Patil NJ, Zappone B, Lee S (2016) Interaction of porcine gastric mucin with various polycations and its influence on the boundary lubrication properties. Polymer 100:158–168. https://doi.org/10.1016/j.polymer.2016.08.030

    Article  CAS  Google Scholar 

  21. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51. https://doi.org/10.1016/j.addr.2015.09.012

    Article  CAS  Google Scholar 

  22. Lynch C, Kondiah PPD, Choonara YE, du Toit LC, Ally N, Pillay V (2019) Advances in biodegradable nano-sized polymer-based ocular drug delivery. Polymers 11(8):1371. https://doi.org/10.3390/polym11081371

    Article  CAS  Google Scholar 

  23. Zhang K, Shi X, Lin X, Yao C, Shen L, Feng Y (2015) Poloxamer-based in situ hydrogels for controlled delivery of hydrophilic macromolecules after intramuscular injection in rats. Drug Deliv 22(3):375–382. https://doi.org/10.3109/10717544.2014.891272

    Article  CAS  Google Scholar 

  24. Al Khateb K, Ozhmukhametova EK, Mussin MN, Seilkhanov SK, Rakhypbekov TK, Lau WM, Khutoryanskiy VV (2016) In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int J Pharm 502(1):70–79. https://doi.org/10.1016/j.ijpharm.2016.02.027

    Article  CAS  Google Scholar 

  25. Pham DT, Saelim N, Tiyaboonchai W (2018) Crosslinked fibroin nanoparticles using EDC or PEI for drug delivery: physicochemical properties, crystallinity and structure. J Mater Sci 53(20):14087–14103

    Article  CAS  Google Scholar 

  26. Lai C-F, Li J-S, Fang Y-T, Chien C-J, Lee C-H (2018) UV and blue-light anti-reflective structurally colored contact lenses based on a copolymer hydrogel with amorphous array nanostructures. RSC Adv 8(8):4006–4013. https://doi.org/10.1039/c7ra12753g

    Article  CAS  Google Scholar 

  27. Baranowski P, Karolewicz B, Gajda M, Pluta J (2014) Ophthalmic drug dosage forms: characterisation and research methods. Sci World J 2014:14. https://doi.org/10.1155/2014/861904

    Article  Google Scholar 

  28. Almeida H, Amaral MH, Lobao P, Silva AC, Loboa JM (2014) Applications of polymeric and lipid nanoparticles in ophthalmic pharmaceutical formulations: present and future considerations. J Pharm Pharm Sci 17(3):278–293. https://doi.org/10.18433/j3dp43

    Article  Google Scholar 

  29. Pham DT, Saelim N, Tiyaboonchai W (2019) Alpha mangostin loaded crosslinked silk fibroin-based nanoparticles for cancer chemotherapy. Coll Surf B 181:705–713. https://doi.org/10.1016/j.colsurfb.2019.06.011

    Article  CAS  Google Scholar 

  30. Bhat NV, Nadiger GS (1980) Crystallinity in silk fibers: partial acid hydrolysis and related studies. J Appl Polym Sci 25(5):921–932. https://doi.org/10.1002/app.1980.070250518

    Article  CAS  Google Scholar 

  31. Irimia T, Ghica MV, Popa L, Anuţa V, Arsene A-L, Dinu-Pîrvu C-E (2018) Strategies for improving ocular drug bioavailability and corneal wound healing with chitosan-based delivery systems. Polymers 10(11):1221. https://doi.org/10.3390/polym10111221

    Article  CAS  Google Scholar 

  32. Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle-hydrogel composites: concept, design, and applications of these promising. Multi-Funct Mater Adv Sci 2(1–2):1400010. https://doi.org/10.1002/advs.201400010

    Article  CAS  Google Scholar 

  33. Argenta DbF, Santos TCd, Campos AM, Caon T (2019) Hydrogel nanocomposite systems: physicochemical characterization and application for drug-delivery systems, in nanocarriers for drug delivery: Nanoscience and nanotechnology in drug delivery. Elsevier In. 81–131

  34. Cabana A, Aït-Kadi A, Juhász J (1997) Study of the Gelation Process of Polyethylene Oxidea-Polypropylene Oxideb–Polyethylene OxideaCopolymer (Poloxamer 407) Aqueous Solutions. J Colloid Interface Sci 190(2):307–312. https://doi.org/10.1006/jcis.1997.4880

    Article  CAS  Google Scholar 

  35. Dumortier G, Grossiord JL, Agnely F, Chaumeil JC (2006) A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 23(12):2709–2728. https://doi.org/10.1007/s11095-006-9104-4

    Article  CAS  Google Scholar 

  36. Ruel-Gariépy E, Leroux J-C (2004) In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm 58(2):409–426. https://doi.org/10.1016/j.ejpb.2004.03.019

    Article  CAS  Google Scholar 

  37. Jung Y-s, Park W, Park H, Lee D-K, Na K (2017) Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. Carbohydr Polym 156(Supplement C) 156:403–408. https://doi.org/10.1016/j.carbpol.2016.08.068

    Article  CAS  Google Scholar 

  38. Choi SW, Kim J (2018) Therapeutic contact lenses with polymeric vehicles for ocular drug delivery: a review. Materials (Basel) 11(7):1125. https://doi.org/10.3390/ma11071125

    Article  CAS  Google Scholar 

  39. Lanier OL, Manfre MG, Bailey C, Liu Z, Sparks Z, Kulkarni S, Chauhan A (2021) Review of approaches for increasing ophthalmic bioavailability for eye drop formulations. AAPS PharmSciTech 22(3):1–16. https://doi.org/10.1208/s12249-021-01977-0

    Article  CAS  Google Scholar 

  40. Kumar D, Jain N, Gulati N, Nagaich U (2013) Nanoparticles laden in situ gelling system for ocular drug targeting. J Adv Pharm Technol Res 4(1):9–17. https://doi.org/10.4103/2231-4040.107495

    Article  CAS  Google Scholar 

  41. Jain D, Kumar V, Singh S, Mullertz A, Bar-Shalom D (2016) Newer trends in in situ gelling systems for controlled ocular drug delivery. J Anal Pharm Res 2(3):1–16

    Article  Google Scholar 

  42. El-Kamel AH (2002) In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm 241(1):47–55. https://doi.org/10.1016/S0378-5173(02)00234-X

    Article  CAS  Google Scholar 

  43. Morsi N, Ghorab D, Refai H, Teba H (2016) Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. Int J Pharm 506(1):57–67. https://doi.org/10.1016/j.ijpharm.2016.04.021

    Article  CAS  Google Scholar 

  44. Wu C, Qi H, Chen W, Huang C, Su CC, Li W, Hou S (2007) Preparation and evaluation of a Carbopol/HPMC-based in situ gelling ophthalmic system for puerarin. Yakugaku Zasshi 127(1):183–191

    Article  CAS  Google Scholar 

  45. Shivam UU, Siddhi KC, Devarshi UG, Umeshkumar MU, Jayvadan KP (2020) Nanoparticles laden In situ gel for sustained drug release after topical ocular administration. J Drug Deliv Sci Technol 57:101736. https://doi.org/10.1016/j.jddst.2020.101736

    Article  CAS  Google Scholar 

  46. Singh J, Chhabra G, Pathak K (2014) Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. ex vivo evaluation and pharmacodynamic study. Drug Dev Ind Pharm 40:1223–1232

    Article  CAS  Google Scholar 

  47. Barwicz J, Christian S, Gruda I (1992) Effects of the aggregation state of amphotericin B on its toxicity to mice. Antimicrob Agents Chemother 36(10):2310–2315. https://doi.org/10.1128/aac.36.10.2310

    Article  CAS  Google Scholar 

  48. Churchill DN, Seely J (1977) Nephrotoxicity associated with combined gentamicin-amphotericin B therapy. Nephron 19(3):176–181. https://doi.org/10.1159/000180883

    Article  CAS  Google Scholar 

  49. Adams ML, Kwon GS (2003) Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block–poly(N-hexyl-l-aspartamide)-acyl conjugate micelles: effects of acyl chain length. J Control Release 87(1):23–32. https://doi.org/10.1016/S0168-3659(02)00347-4

    Article  CAS  Google Scholar 

  50. Barwicz J, Tancrède P (1997) The effect of aggregation state of amphotericin-B on its interactions with cholesterol-or ergosterol-containing phosphatidylcholine monolayers. Chem Phys Lipids 85(2):145–155. https://doi.org/10.1016/S0009-3084(96)02652-7

    Article  CAS  Google Scholar 

  51. Zia Q, Khan AA, Swaleha Z, Owais M (2015) Self-assembled amphotericin B-loaded polyglutamic acid nanoparticles: preparation, characterization and in vitro potential against Candida albicans. Int J Nanomedicine 10:1769–1790. https://doi.org/10.2147/ijn.s63155

    Article  CAS  Google Scholar 

  52. Pham DT, Saelim N, Tiyaboonchai W (2019) Alpha mangostin loaded crosslinked silk fibroin-based nanoparticles for cancer chemotherapy. Coll Surf B Biointerfaces 181:705–713. https://doi.org/10.1016/j.colsurfb.2019.06.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Council of Thailand (NRCT) under the Royal Golden Jubilee Ph.D. program [Grant No. PHD/0160/2560]. The authors are thankful to Faculty of Pharmaceutical Sciences, Naresuan University for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waree Tiyaboonchai.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 205 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chomchalao, P., Saelim, N. & Tiyaboonchai, W. Preparation and characterization of amphotericin B-loaded silk fibroin nanoparticles-in situ hydrogel composites for topical ophthalmic application. J Mater Sci 57, 12522–12539 (2022). https://doi.org/10.1007/s10853-022-07413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07413-3