Skip to main content

Advertisement

Log in

Synthesis, physicochemical, and antimicrobial characteristics of novel poly(urethane-siloxane) network/silver ferrite nanocomposites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In situ polymerization was used to produce novel AgFeO2@PEG/polyurethane network nanocomposites (NP-PUs) with 30–60 wt% of soft poly(dimethylsiloxane) segments in polyurethane (PU), containing 1 wt% of PEG-coated AgFeO2 nanoparticles, AgFeO2@PEG. Physicochemical properties and in vitro biological activity of the NP-PUs were systematically evaluated in terms of AgFeO2@PEG (NP) addition and soft segment content. High-angle annular dark-field transmission electron microscopy showed that the nanoparticles were generally uniformly distributed in the PU matrix. Increased soft segment content caused significantly increased intensity of the broad, amorphous X-ray diffraction peaks of crystalline AgFeO2, probably because the chemical composition of PU affected the distribution of nanoparticles. The Young modulus, hardness, and plasticity of the NP-PUs were higher than for pure PU and increased with decreasing soft segment content. Decreased soft segment content induced higher microphase separation, increased hydrophilicity and swelling ability, but decreased cross-linking density. Additionally, NP-PUs had higher glass transition temperatures, improved thermal stability, and enhanced nanomechanical performance over pure PU. The NP-PUs demonstrated good selective inhibition of Candida albicans and Candida parapsilosis (30–55%) and no pronounced cytotoxicity to MRC5 human lung fibroblasts. Among the investigated AgFeO2@PEG/PUs, the best antifungal activity was shown by composites with 30 and 40 wt% soft segments. Consequently, the novel AgFeO2@PEG/polyurethane network nanocomposites could be further optimized to be used as biocompatible surfaces that also prevent formation of fungal biofilms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Vermette R, Griesser HJ, Laroche G, Guidoin R (2001) Biomedical Applications of polyurethanes. Landes Bioscience, Austin, TX

    Google Scholar 

  2. Leroux F, Troutier AL (2009) Polyurethane Nanocomposites. In: Thomas S, Zaikov GE, Valsaraj SV (eds) Recent advances in polymer nanocomposites. CRC Press, Boca Raton, pp 181–226

    Chapter  Google Scholar 

  3. Yilgor I, Yilgor E, Wilkes GL (2015) Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review. Polymer 58:A1–A36. https://doi.org/10.1016/j.polymer.2014.12.014

    Article  CAS  Google Scholar 

  4. Chattopadhya DK, Raju KVSN (2007) Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 32:352–418. https://doi.org/10.1016/j.progpolymsci.2006.05.003

    Article  CAS  Google Scholar 

  5. Yilgör I, McGrath JE (1988) Polysiloxane containing copolymers: a survey of recent developments. Adv Polym Sci 86:1–86. https://doi.org/10.1007/BFb0025274

    Article  Google Scholar 

  6. Li N, Yue X, Zhang L, Wang K, Zhang J, Zhang Z, Dang F (2019) Versatile antifouling coatings based on self-assembled oligopeptides for engineering and biological materials. J Mater Chem B 7:2242–2246. https://doi.org/10.1039/C9TB00084D

    Article  CAS  Google Scholar 

  7. Dvornic PR, Lenz RW (1990) High temperature siloxane elastomers. Hüthing & Wepf, Heidelberg and New York

    Google Scholar 

  8. Hernandez R, Weksler J, Padsalgika A, Runt J (2008) In vitro oxidation of high polydimethylsiloxane content biomedical polyurethanes: correlation with the microstructure. J Biomed Mater Res A 87:546–556. https://doi.org/10.1002/jbm.a.31823

    Article  CAS  Google Scholar 

  9. Czech P, Okrasa L, Boiteux G, Mechin F, Ulanski J (2005) Polyurethane networks based on hyperbranched polyesters: synthesis and molecular relaxations. J Non-Cryst Sol 351:2735–2741. https://doi.org/10.1016/j.jnoncrysol.2005.05.038

    Article  CAS  Google Scholar 

  10. Maji PK, Bhowmick AK (2013) Structure–property correlation of polyurethane nanocomposites: influence of loading and nature of nanosilica and microstructure of hyperbranched polyol. J Appl Polym Sci 127:4492–4504. https://doi.org/10.1002/app.38063

    Article  CAS  Google Scholar 

  11. Mishra K, Narayan R, Raju KVSN, Aminabhavi TM (2012) Hyperbranched polyurethane (HBPU)-urea and HBPU-imide coatings: Effect of chain extender and NCO/OH ratio on their properties. Prog Org Coat 74:134–141. https://doi.org/10.1016/j.porgcoat.2011.11.027

    Article  CAS  Google Scholar 

  12. Žagar E, Huskić M, Žigon M (2007) Structure-to-properties relationship of aliphatic hyperbranched polyesters. Macromol Chem Phys 208:1379–1387. https://doi.org/10.1002/macp.200600672

    Article  CAS  Google Scholar 

  13. Žagar E, Žigon M (2011) Aliphatic hyperbranched polyesters based on 2,2-bis(methylol)propionic acid—Determination of structure, solution and bulk properties. Prog Polym Sci 36:53–88. https://doi.org/10.1016/j.progpolymsci.2010.08.004

    Article  CAS  Google Scholar 

  14. Maji PK, Bhowmick AK (2009) Influence of number of functional groups of hyperbranched polyol on cure kinetics and physical properties of polyurethanes. J Polym Sci Polym Chem 47:731–745. https://doi.org/10.1002/pola.23185

    Article  CAS  Google Scholar 

  15. Czech P, Okrasa L, Ulanski J, Boiteux G, Mechin F, Cassagnau P (2007) Studies of the molecular dynamics in polyurethane networks with hyperbranched crosslinkers of different coordination numbers. J Appl Polym Sci 105:89–98. https://doi.org/10.1002/app.26106

    Article  CAS  Google Scholar 

  16. Asif A, Shi W, Shen X, Nie K (2005) Physical and thermal properties of UV curable waterborne polyurethane dispersions incorporating hyperbranched aliphatic polyester of varying generation number. Polymer 46:11066–11078. https://doi.org/10.1016/j.polymer.2005.09.046

    Article  CAS  Google Scholar 

  17. Pergal MV, Džunuzović JV, Poręba R, Ostojić S, Radulović A, Špírková M (2013) Microstructure and properties of poly(urethane-siloxane)s based on hyperbranched polyester of the fourth pseudo generation. Prog Org Coat 76:743–756. https://doi.org/10.1016/j.porgcoat.2013.01.007

    Article  CAS  Google Scholar 

  18. Pergal MV, Džunuzović JV, Poręba R, Steinhart M, Pergal MM, Vodnik VV, Špírková M (2013) Structure–property correlation study of novel poly(urethane–ester–siloxane) networks. Ind Eng Chem Res 52:6164–6176. https://doi.org/10.1021/ie400467j

    Article  CAS  Google Scholar 

  19. Džunuzović JV, Pergal MV, Poręba R, Vodnik V, Simonović BR, Špírková M, Jovanović S (2012) Analysis of dynamic mechanical, thermal and surface properties of poly(urethane-ester-siloxane) networks based on hyperbranched polyester. J Non-Crst Sol 358:3161–3169. https://doi.org/10.1016/j.jnoncrysol.2012.09.013

    Article  CAS  Google Scholar 

  20. Saidin S, Jumat MA, Mohd Amin NAA, Saleh Al-Hammadi AS (2021) Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application. Mater Sci Eng C 118:1–18. https://doi.org/10.1016/j.msec.2020.111382

    Article  CAS  Google Scholar 

  21. Pugazhedhi A, Vasantharaj S, Sathiyavimal S, Raja RK, Karuppusamy I, Narayanan M, Kandasamy S, Brindhadevi K (2021) Organic and inorganic nanomaterial coatings for the prevention of microbial growth and infections on biotic and abiotic surfaces. Surf Coat Technol 425:1–11. https://doi.org/10.1016/j.surfcoat.2021.127739

    Article  CAS  Google Scholar 

  22. Eleraky NE, Allam AH, Sahar B, Omar MM (2020) Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations. Pharmaceutics 12:1–49. https://doi.org/10.3390/pharmaceutics12020142

    Article  CAS  Google Scholar 

  23. Rashti A, Yahyaei H, Firoozi S, Ramezani S, Rahiminejad A, Karimi R, Farzaneh K, Mohseni M, Ghanbari H (2016) Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process. Mater Sci Eng C 69:1248–1255. https://doi.org/10.1016/j.msec.2016.08.037

    Article  CAS  Google Scholar 

  24. Hsu S-H, Tseng H-J, Lin Y-C (2010) The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 31:6796–6808. https://doi.org/10.1016/j.biomaterials.2010.05.015

    Article  CAS  Google Scholar 

  25. Valenzuela L, Iglesias-Juez A, Bachiller-Baeza B, Faraldos M, Bahamonde A, Rosal R (2020) Biocide mechanism of highly efficient and stable antimicrobial surfaces based on zinc oxide–reduced graphene oxide photocatalytic coatings. J Mater Chem B 8:8294–8304. https://doi.org/10.1039/D0TB01428A

    Article  CAS  Google Scholar 

  26. Rajendran V, Dhineshbabu NR, Kanna RR, Kaler KVIS (2014) Enhancement of thermal stability, flame retardancy, and antimicrobial properties of cotton fabrics functionalized by inorganic nanocomposites. Ind Eng Chem Res 53:19512–19524. https://doi.org/10.1021/ie502584m

    Article  CAS  Google Scholar 

  27. Zhao B, Jia R, Zhang Y, Liu D, Zheng X (2019) Design and synthesis of antibacterial waterborne fluorinated polyurethane. J Appl Polym Sci 136:1–11. https://doi.org/10.1002/app.46923

    Article  CAS  Google Scholar 

  28. Du S, Wang Y, Zhang C, Deng X, Luo X, Fu Y, Liu Y (2018) Self-antibacterial UV-curable waterborne polyurethane with pendant amine and modified by guanidinoacetic acid. J Mater Sci 53:215–229. https://doi.org/10.1007/s10853-017-1527-2

    Article  CAS  Google Scholar 

  29. Malay O, Oguz O, Kosak C, Yilgor E, Yilgor I, Menceloglu YZ (2013) Polyurethaneurea–silica nanocomposites: preparation and investigation of the structure–property behavior. Polymer 54:5310–5320. https://doi.org/10.1016/j.polymer.2013.07.043

    Article  CAS  Google Scholar 

  30. Poręba R, Špírková M, Brožová L, Lazić N, Pavličević J, Strachota A, (2013) Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. II. Mechanical, thermal and gas transport properties. J Appl Polym Sci 127:329–341. https://doi.org/10.1002/app.37895

    Article  CAS  Google Scholar 

  31. Xiong J, Zheng Z, Jiang H, Ye S, Wang X (2007) Reinforcement of polyurethane composites with an organically modified montmorillonite. Composites A 38:132–137. https://doi.org/10.1016/j.compositesa.2006.01.014

    Article  CAS  Google Scholar 

  32. Špírková M, Pavličević J, Costumbre YA, Hodan J, Krejčíková S, Brožová L (2020) Novel waterborne poly(urethane-urea)/silica nanocomposites. Polym Comp 41:4031–4042. https://doi.org/10.1002/pc.25690

    Article  CAS  Google Scholar 

  33. Cao X, Lee LJ, Widya T, Macosco C (2005) Polyurethane/clay nanocomposites foams: processing, structure and properties. Polymer 46:775–783. https://doi.org/10.1016/j.polymer.2004.11.028

    Article  CAS  Google Scholar 

  34. Choi SH, Kim DH, Raghu AV, Reddy KR, Lee HI, Yoon KS, Jeong HM, Kim BK (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci B: Phys 51:197–207. https://doi.org/10.1080/00222348.2011.583193

    Article  CAS  Google Scholar 

  35. Kuan HC, Ma CCM, Chang WP, Yuen SM, Wu HH, Lee TM (2005) Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos Sci Technol 65:1703–1710. https://doi.org/10.1016/j.compscitech.2005.02.017

    Article  CAS  Google Scholar 

  36. Chou CV, Hsu SH, Chang H, Tseng SM, Lin HR (2006) Enhanced thermal and mechanical properties and biostability of polyurethane containing silver nanoparticles. Polym Degrad Stabil 91:1017–1024. https://doi.org/10.1016/j.polymdegradstab.2005.08.001

    Article  CAS  Google Scholar 

  37. Charpentier PA, Burgess K, Wang L, Chowdhury RR, Lotus AF, Moula G (2012) Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings. Nanotechnology 23:1–9. https://doi.org/10.1088/0957-4484/23/42/425606

    Article  CAS  Google Scholar 

  38. Das B, Mandal M, Upadhyay A, Chattopadhyay P, Karak N (2013) Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed Mater 8:1–12. https://doi.org/10.1088/1748-6041/8/3/035003

    Article  CAS  Google Scholar 

  39. Riaz U, Ashraf SM, Jadoun S, Iqbal A, Ahmad S (2018) Silver ferrite and cobalt ferrite dispersed castor oil polyurethane nanocomposites: quenching studies of bovine serum albumin. Int J Polym Mater 67:925–933. https://doi.org/10.1080/00914037.2017.1393683

    Article  CAS  Google Scholar 

  40. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  41. Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc Chem Res 42:1097–1107. https://doi.org/10.1021/ar9000026

    Article  CAS  Google Scholar 

  42. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742. https://doi.org/10.1002/adma.201000260

    Article  CAS  Google Scholar 

  43. Açıkalın E, Atıcı O, Sayıntı A, Çobana K, Erkalfa H (2013) Preparation of dendritic waterborne polyurethane-urea/Ni–Zn ferrite composite coatings and investigation of their microwave absorption properties. Prog Org Coat 76:972–978. https://doi.org/10.1016/j.porgcoat.2012.10.008

    Article  CAS  Google Scholar 

  44. Chen S, Chen S, Zhao G, Chen J (2015) Fabrication and properties of novel superparamagnetic, well–dispersed waterborne polyurethane/Ni–Zn ferrite nanocomposites. Compos Sci Technol 119:108–114. https://doi.org/10.1016/j.compscitech.2015.09.020

    Article  CAS  Google Scholar 

  45. Agarwal K, Prasad M, Katiyar M, Kumar R, Prasad NE (2019) Preparation and characterization of Ni0.5Zn0.5Fe2O4 + polyurethane nanocomposites using melt mixing method. SILICON 11:1035–1045. https://doi.org/10.1007/s12633-018-9900-6

    Article  CAS  Google Scholar 

  46. Hsu S, Tang CM, Tseng HJ (2008) Gold nanoparticles induce surface morphological transformation in polyurethane and affect the cellular response. Biomacromol 9:241–248. https://doi.org/10.1021/bm700471k

    Article  CAS  Google Scholar 

  47. Prabhakar PK, Raj S, Anuradha PR, Sawant SN, Doble M (2011) Biocompatibility studies on polyaniline and polyaniline–silver nanoparticle coated polyurethane composite. Coll Surf B Biointerfaces 86:146–153. https://doi.org/10.1016/j.colsurfb.2011.03.033

    Article  CAS  Google Scholar 

  48. Nguyen-Tri P, Nguyen VT, Nguyen TA (2019) Biological activity and nanostructuration of Fe3O4-Ag/high density polyethylene nanocomposites. J Compos Sci 3:1–14. https://doi.org/10.3390/jcs3020034

    Article  CAS  Google Scholar 

  49. Ngo TD, Le Hanh TM, Nguyen TH, Nguyen TV, Nguyen TA, Le Lu T, Nguyen TT, Van Tran TT, Le Thao TB, Hai Doan N (2016) Antibacterial nanocomposites based on Fe3O4–Ag hybrid nanoparticles and natural rubber-polyethylene blends. Int J Polym Sci 2016:1–9. https://doi.org/10.1155/2016/7478161

    Article  CAS  Google Scholar 

  50. Chudasama B, Vala AK, Andhariya N, Upadhyay RV, Mehta RV (2009) Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res 2:955–965. https://doi.org/10.1007/s12274-009-9098-4

    Article  CAS  Google Scholar 

  51. Quang DV, Sarawade PB, Hilonga A, Kim J-K, Chai YG, Kim SH, Ryu J-Y, Kim HT (2011) Preparation of silver nanoparticle containing silica micro beads and investigation of their antibacterial activity. Appl Surf Sci 257:6963–6970. https://doi.org/10.1016/j.apsusc.2011.03.041

    Article  CAS  Google Scholar 

  52. Tung LM, Cong NX, Huy LT, Lan NT, Phan VN, Hoa NQ, Vinh LK, Thinh NV, Tai LT, Ngo D-T, Mølhave K, Huy TQ, Le AT (2016) Synthesis, characterizations of superparamagnetic Fe3O4-Ag hybrid nanoparticles and their application for highly effective bacteria inactivation. J Nanosci Nanotechnol 16:5902–5912. https://doi.org/10.1166/jnn.2016.11029

    Article  CAS  Google Scholar 

  53. Pergal MV, Brkljacic J, Tovilovic-Kovacevic G, Špírková M, Kodranov ID, Manojlovic DD, Ostojic S, Knezevic NZ (2021) Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites. Prog Org Coat 151:1–13. https://doi.org/10.1016/j.porgcoat.2020.106049

    Article  CAS  Google Scholar 

  54. Marand A, Dahlin J, Karlsson D, Skarping G, Dalene M (2004) Determination of technical grade isocyanates used in the production of polyurethane plastics. J Environ Monit 6:606–614. https://doi.org/10.1039/B402775B

    Article  CAS  Google Scholar 

  55. Flory PJ, Rehner JH (1943) Statistical mechanics of cross-linked polymer networks II. swelling. J Chem Phys 11(11):521. https://doi.org/10.1063/1.1723792

    Article  CAS  Google Scholar 

  56. Ghaheh FS, Mortazavi SM, Alihosseini F, Fassihi A, Nateri AS, Abedi D (2014) Assessment of antibacterial activity of wool fabrics dyed with natural dyes. J Clean Prod 72:139–145. https://doi.org/10.1016/j.jclepro.2014.02.050

    Article  CAS  Google Scholar 

  57. Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203–210. https://doi.org/10.1016/0022-1759(89)90397-9

    Article  CAS  Google Scholar 

  58. Jaiswal M, Koul V (2013) Assessment of multicomponent hydrogel scaffolds of poly(acrylic acid-2-hydroxy ethyl methacrylate)/gelatin for tissue engineering applications. J Biomater Appl 27:848–861. https://doi.org/10.1177/0885328211428524

    Article  CAS  Google Scholar 

  59. Ponjavic M, Nikolic MS, Stevanovic S, Nikodinovic-Runic J, Jeremic S, Pavic A, Djonlagic J (2020) Hydrolytic degradation of star-shaped poly(epsilon-caprolactone)s with different number of arms and their cytotoxic effects. J Bioact Compat Polym 35:517–537. https://doi.org/10.1177/0883911520951826

    Article  CAS  Google Scholar 

  60. Marković D, Vasiljević J, Ašanin J, Ilic-Tomic T, Tomšič B, Jokić B, Mitrić M, Simončič B, Mišić D, Radetić M (2020) The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions. J Appl Polym Sci 137:1–12. https://doi.org/10.1002/app.49194

    Article  CAS  Google Scholar 

  61. Hosseini SM, Hosseini-Monfared H, Abbasi V, Khoshroo MR (2016) Selective oxidation of hydrocarbons under air using recoverable silver ferrite–graphene (AgFeO2–G) nanocomposite: a good catalyst for green chemistry. Inorg Chem Commun 67:72–79. https://doi.org/10.1016/j.inoche.2016.03.011

    Article  CAS  Google Scholar 

  62. Pergal MV, Antić VV, Tovilović G, Nestorov J, Vasiljević-Radović D, Djonlagić J (2012) In vitro biocompatibility evaluation of novel urethane–siloxane copolymers based on poly(ε-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ε-caprolactone). J Biomat Sci Polym Edn 23:1629–1657. https://doi.org/10.1163/092050611x589338

    Article  CAS  Google Scholar 

  63. Pavličević J, Špirkova M, Jovičić M, Budinski-Simendić J, Pilić B, Baloš S, Bera O (2019) Structure—functional property relationship of aliphatic polyurethane-silica hybrid films. Prog Org Coat 126:62–74. https://doi.org/10.1016/j.porgcoat.2018.10.011

    Article  CAS  Google Scholar 

  64. Zhang J, Pu HuC (2008) Synthesis, characterization and mechanical properties of polyester-based aliphatic polyurethane elastomers containing hyperbranched polyester segments. Eur Polym J 44:3708–3714. https://doi.org/10.1016/j.eurpolymj.2008.08.019

    Article  CAS  Google Scholar 

  65. Lligadas G, Ronda JC, Galià M, Cádiz V (2007) Polyurethane networks from fatty-acid-based aromatic triols: synthesis and characterization. Biomacromol 8:1858–1864. https://doi.org/10.1021/bm070157k

    Article  CAS  Google Scholar 

  66. Chen S, Jin T, Wu W, Zhao G (2016) Novel environmentally friendly waterborne polyurethane/hollow Ni0.3Zn0.5Fe2O4 nanocomposite films: superior magnetic and mechanical properties. RSC Adv 6:75440–75448. https://doi.org/10.1039/C6RA11937A

    Article  CAS  Google Scholar 

  67. Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc Math Phys Eng Sci 295:300–319. https://doi.org/10.1098/rspa.1966.0242

    Article  CAS  Google Scholar 

  68. Tanaka K (1987) Elastic/plastic indentation hardness and indentation fracture toughness: the inclusion core model. J Mater Sci 22:1501–1508. https://doi.org/10.1007/BF01233154

    Article  Google Scholar 

  69. Yu JW, Jung J, Choi Y-M, Choi JH, Yu J, Lee JK, You N-H, Goh M (2016) Enhancement of the crosslink density, glass transition temperature, and strength of epoxy resin by using functionalized graphene oxide co-curing agents. Polym Chem 7:36–43. https://doi.org/10.1039/C5PY01483B

    Article  CAS  Google Scholar 

  70. Xu C-A, Nan B, Lu M, Qu Z, Tan Z, Wu K, Shi J (2020) Effects of polysiloxanes with different molecular weights on in vitro cytotoxicity and properties of polyurethane/cotton–cellulose nanofiber nanocomposite films. Polym Chem 11:5225–5237. https://doi.org/10.1039/D0PY00809E

    Article  CAS  Google Scholar 

  71. Liu M, Liu T, Chen X, Yang J, Deng J, He W, Zhang X, Lei Q, Hu X, Luo G, Wu J (2018) Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing. J Nanobiotechnol 16:1–19. https://doi.org/10.1186/s12951-018-0416-4

    Article  CAS  Google Scholar 

  72. Damm C, Münstedt H, Rösch A (2008) The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mater Chem Phys 108:61–66. https://doi.org/10.1016/j.matchemphys.2007.09.002

    Article  CAS  Google Scholar 

  73. Ajili SH, Ebrahimi NG, Soleimani M (2009) Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta Biomater 5:1519–1530. https://doi.org/10.1016/j.actbio.2008.12.014

    Article  CAS  Google Scholar 

  74. Moraes C, Kagoma YK, Beca BM, Tonelli-Zasarsky RL, Sun Y, Simmons CA (2009) Integrating polyurethane culture substrates into poly(dimethylsiloxane) microdevices. Biomaterials 30:5241–5250. https://doi.org/10.1016/j.biomaterials.2009.05.066

    Article  CAS  Google Scholar 

  75. Wang M-C, Lin J-J, Tseng H-J, Hsu S-H (2012) Characterization, antimicrobial activities, and biocompatibility of organically modified clays and their nanocomposites with polyurethane. ACS Appl Mater Interfaces 4:338–350. https://doi.org/10.1021/am2014103

    Article  CAS  Google Scholar 

  76. Tolstov AL (2014) Studying an effect of polyurethane functionality directed stabilization of silver nanoparticles as a pathway for manufacturing modern antimicrobial materials. Proc Int Conf Nanomater: Appl Prop 3:1–4

    Google Scholar 

  77. Woźniak A, Malankowska A, Nowaczyk G, Grześkowiak TK, Słomski R, Zaleska-Medynska A, Jurga S (2017) Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci Mater Med 28:1–11. https://doi.org/10.1007/s10856-017-5902-y

    Article  CAS  Google Scholar 

  78. Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:1–17. https://doi.org/10.1186/1743-8977-7-22

    Article  CAS  Google Scholar 

  79. Peng H, Zhang Y, Wei Y, Liu W, Li S, Yu G, Fu X, Cao T, Deng X (2012) Cytotoxicity of silver nanoparticles in human embryonic stem cell-derived fibroblasts and an L-929 cell line. J Nanomater 2012:1–9. https://doi.org/10.1155/2012/160145

    Article  CAS  Google Scholar 

  80. Sadu RB, Chen DH, Kucknoor AS, Guo Z, Gomes AJ (2014) Silver-doped TiO2/polyurethane nanocomposites for antibacterial textile coating. BioNanoSci 4:136–148. https://doi.org/10.1007/s12668-014-0125-x

    Article  Google Scholar 

  81. Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jimènez MJ, Jose-Yacaman M (2015) Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnol 13:1–12. https://doi.org/10.1186/s12951-015-0147-8

    Article  CAS  Google Scholar 

  82. Monteiro DR, Takamiya AS, Feresin LP, Gorup LF, de Camargo ER, Delbem ACB, Henriques M, Barbosa DB (2014) Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic. Med Mycol 52:627–635. https://doi.org/10.1093/mmy/myu021

    Article  CAS  Google Scholar 

  83. Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed 15:2555–2562. https://doi.org/10.2147/IJN.S246764

    Article  CAS  Google Scholar 

  84. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3E3.0.co;2-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No: 451-03-68/2022-14/200026) for financial support. The authors are grateful to Prof. Aleksandra Korać (Faculty of Biology, University of Belgrade) for the preparation of nanocomposite thin films for TEM measurements. Also, the authors thank MSc Miloš Ognjanović (Vinča Institute, University of Belgrade) for XRD measurements, Dr Miodrag Pergal (Faculty of Chemistry, University of Belgrade) for MP-AES measurements, and MSc Igor Kodranov (Faculty of Chemistry, University of Belgrade) for experimental support with preparation of NP-PU materials. G.D. and N.Z.L. acknowledge the financial support from Slovenian Research Agency, P2-0393 and P1-0021, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija V. Pergal.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 112 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pergal, M.V., Dojčinović, B.P., Nikodinović-Runić, J. et al. Synthesis, physicochemical, and antimicrobial characteristics of novel poly(urethane-siloxane) network/silver ferrite nanocomposites. J Mater Sci 57, 7827–7848 (2022). https://doi.org/10.1007/s10853-022-07178-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07178-9

Navigation