Skip to main content

Advertisement

Log in

The boosting of electrocatalytic CO2-to-CO transformation by using the carbon nanotubes-supported PCN-222(Fe) nanoparticles composite

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Molecular complexes with active metal centers exhibit high activity and selectivity for electrochemical CO2 reduction reaction (CO2RR), which represents a promising method for transforming greenhouse gas into valuable chemicals and feedstock. Using metal–organic frameworks (MOFs) to load the active molecular complexes then employing the combination with the carbonic conducting material may exhibit a beneficial effect for CO2RR. Herein, we obtained a composite catalyst named PCN-222(Fe)/CNTs, which was in situ synthesized through the solvothermal method that loads iron porphyrin-centered PCN-222(Fe) molecules onto CNTs. The catalyst PCN-222(Fe)/CNTs exhibits excellent electrocatalytic performance for CO2RR with a FECO of 95.5% (m(Fe-TCPP):m(CNTs) = 1:30, written as PCN-222(Fe)/CNTs-30) and an overpotential (η) of 494 mV. In addition, the turnover frequency (TOF) is high as 448.76 h−1 (3.011 site−1 s−1) and the hydrogen evolution reaction (HER) is indistinctive. After long-term electrocatalysis of 10 h at −0.6 V vs. RHE, PCN-222(Fe)/CNTs-30 remained its high catalytic performance with average FECO = 90%. This work provides a solid foundation for further research in the high-efficiency transformation of CO2 to CO.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Yu S, Yang N, Liu S, Jiang X (2021) Electrochemical and photochemical CO2 reduction using diamond. Carbon 175:440–453. https://doi.org/10.1016/j.carbon.2021.01.116

    Article  CAS  Google Scholar 

  2. Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54. https://doi.org/10.1038/nature10915

    Article  CAS  Google Scholar 

  3. Yoshihara N, Arita M, Noda M (2017) Electrolyte dependence for the electrochemical CO2 reduction activity on Cu (111) electrodes. Chem Lett 46:125–127. https://doi.org/10.1246/cl.160888

    Article  CAS  Google Scholar 

  4. Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, Xie Y (2016) Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529:68–71. https://doi.org/10.1038/nature16455

    Article  CAS  Google Scholar 

  5. Gu J, Hsu CS, Bai L, Chen HM, Hu X (2019) Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364:1091–1094. https://doi.org/10.1126/science.aaw7515

    Article  CAS  Google Scholar 

  6. Wang YR, Huang Q, He CT, Chen Y, Liu J, Shen FC, Lan YQ (2018) Oriented electron transmission in polyoxometalate−metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat Commun 9:4466–4474. https://doi.org/10.1038/s41467−018−06938−z

    Article  Google Scholar 

  7. Wang Z, Li T, Wang Q, Guan A, Cao N, Al-Enizi AM, Zhang L, Qian L, Zheng G (2020) Hydrophobically made Ag nanoclusters with enhanced performance for CO2 aqueous electroreduction. J Power Sources 476:228705. https://doi.org/10.1016/j.jpowsour.2020.228705

    Article  CAS  Google Scholar 

  8. Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J, Bao X (2015) Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 137:4288–4291. https://doi.org/10.1021/jacs.5b00046

    Article  CAS  Google Scholar 

  9. Ohkubo K, Takahashi H, Watters EPJ, Taguchi M (2020) In-situ analysis of CO2 electroreduction on Pt and Pt oxide cathodes. Electrochemistry 88:210–217. https://doi.org/10.5796/electrochemistry.19−00066

    Article  CAS  Google Scholar 

  10. Nellaiappan S, Sharma S (2019) Substitution of zinc (II) in nickel (II) oxide as proficient copper-free catalysts for selective CO2 electroreduction. ACS Appl Energy Mater 2:2998–3003. https://doi.org/10.1021/acsaem.9b00242

    Article  CAS  Google Scholar 

  11. Wang H, Chen Y, Hou X, Ma C, Tan T (2016) Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution. Green Chem 18:3250–3256. https://doi.org/10.1039/C6GC00410E

    Article  CAS  Google Scholar 

  12. Qin Z, Jiang X, Cao Y, Dong S, Wang F, Feng L, Chen Y, Guo Y (2021) Nitrogen-doped porous carbon derived from digested sludge for electrochemical reduction of carbon dioxide to formate. Sci Total Environ 759:143575–143583. https://doi.org/10.1016/j.scitotenv.2020.143575

    Article  CAS  Google Scholar 

  13. Gu S, Marianov AN, Zhu Y, Jiang Y (2021) Cobalt porphyrin immobilized on the TiO2 nanotube electrode for CO2 electroreduction in aqueous solution. J Energy Chem 55:219–227. https://doi.org/10.1016/j.jechem.2020.06.067

    Article  Google Scholar 

  14. Shen J, Kortlever R, Kas R, Birdja YY, Diaz-Morales O, Kwon Y, Ledezma-Yanez I, Schouten KJP, Mul G, Koper MTM (2015) Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat Commun 6:8177–8185. https://doi.org/10.1038/ncomms9177

    Article  Google Scholar 

  15. Zhu M, Cao C, Chen J, Sun Y, Ye R, Xu J, Han YF (2019) Electronic tuning of cobalt porphyrins immobilized on nitrogen-doped graphene for CO2 reduction. ACS Appl Energy Mater 2:2435–2440. https://doi.org/10.1021/acsaem.9b00368

    Article  CAS  Google Scholar 

  16. Dong BX, Qian SL, Bu FY, Wu YC, Feng LG, Teng YL, Liu WL, Li ZW (2018) Electrochemical reduction of CO2 to CO by a heterogeneous catalyst of Fe-porphyrin-based metal-organic framework. ACS Appl Energy Mater 1:4662–4669. https://doi.org/10.1021/acsaem.8b00797

    Article  CAS  Google Scholar 

  17. Ambre RB, Daniel Q, Fan T, Chen H, Zhang B, Wang L, Ahlquist MSG, Duan L, Sun L (2016) Molecular engineering for efficient and selective iron porphyrin catalysts for electrochemical reduction of CO2 to CO. Chem Commun 52:14478–14481. https://doi.org/10.1039/C6CC08099E

    Article  CAS  Google Scholar 

  18. Mondal B, Sen P, Rana A, Saha D, Das P, Dey A (2019) Reduction of CO2 to CO by an iron porphyrin catalyst in the presence of oxygen. ACS Catal 9:3895–3899. https://doi.org/10.1021/acscatal.9b00529

    Article  CAS  Google Scholar 

  19. Costentin C, Drouet S, Robert M, Savéant JM (2012) A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338:90–93. https://doi.org/10.1126/science.1224581

    Article  CAS  Google Scholar 

  20. Zhu M, Chen J, Huang L, Ye R, Xu J, Han YF (2019) Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew Chem Int Ed 58:6595–6599. https://doi.org/10.1002/anie.201900499

    Article  CAS  Google Scholar 

  21. Manbeck GF, Fujita E (2015) A review of iron and cobalt porphyrins, phthalocyanines and related complexes for electrochemical and photochemical reduction of carbon dioxide. J Porphyr Phthalocya 19:2–20. https://doi.org/10.1142/S1088424615300013

    Article  CAS  Google Scholar 

  22. Hu XM, Rønne MH, Pedersen SU, Skrydstrup T, Daasbjerg K (2017) Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew Chem 129:6568–6572. https://doi.org/10.1002/anie.201701104

    Article  CAS  Google Scholar 

  23. Maurin A, Robert M (2016) Catalytic CO2-to-CO conversion in water by covalently functionalized carbon nanotubes with a molecular iron catalyst. Chem Commun 52:12084–12087. https://doi.org/10.1039/C6CC05430G

    Article  CAS  Google Scholar 

  24. Zhao HZ, Chang YY, Liu C (2013) Electrodes modified with iron porphyrin and carbon nanotubes: application to CO2 reduction and mechanism of synergistic electrocatalysis. J Solid State Electrochem 17:1657–1664. https://doi.org/10.1007/s10008-013-2027-1

    Article  CAS  Google Scholar 

  25. Li D, Xu HQ, Jiao L, Jiang HL (2019) Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem 1:100005–100044. https://doi.org/10.1016/j.enchem.2019.100005

    Article  CAS  Google Scholar 

  26. Zhu L, Liu XQ, Jiang HL, Sun LB (2017) Metal−organic frameworks for heterogeneous basic catalysis. Chem Rev 117:8129–8176. https://doi.org/10.1021/acs.chemrev.7b00091

    Article  CAS  Google Scholar 

  27. Hod I, Sampson MD, Deria P, Kubiak CP, Farha OK, Hupp JT (2015) Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal 5:6302–6309. https://doi.org/10.1021/acscatal.5b01767

    Article  CAS  Google Scholar 

  28. Kornienko N, Zhao Y, Kley CS, Zhu C, Kim D, Lin S, Chang CJ, Yaghi OM, Yang P (2015) Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc 137:14129–14135. https://doi.org/10.1021/jacs.5b08212

    Article  CAS  Google Scholar 

  29. Huang X, Shen Q, Liu J, Yang N, Zhao G (2016) A CO2 adsorption-enhanced semiconductor/metal-complex hybrid photoelectrocatalytic interface for efficient formate production. Energy Environ Sci 9:3161–3171. https://doi.org/10.1039/C6EE00968A

    Article  CAS  Google Scholar 

  30. Shen Q, Huang X, Liu J, Guo C, Zhao G (2017) Biomimetic photoelectrocatalytic conversion of greenhouse gas carbon dioxide: two-electron reduction for efficient formate production. Appl Catal B Environ 201:70–76. https://doi.org/10.1016/j.apcatb.2016.08.008

    Article  CAS  Google Scholar 

  31. Petit C, Bandosz TJ (2009) MOF-graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks. Adv Mater 21:4753–4757. https://doi.org/10.1002/adma.200901581

    Article  CAS  Google Scholar 

  32. Abdinejad M, Wilm LFB, Dielmann F, Kraatz HB (2021) Electroreduction of CO2 catalyzed by nickel imidazolin-2-ylidenamino-porphyrins in both heterogeneous and homogeneous molecular systems. ACS Sustain Chem Eng 9:521–530. https://doi.org/10.1021/acssuschemeng.0c07964

    Article  CAS  Google Scholar 

  33. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136. https://doi.org/10.1021/cr050569o

    Article  CAS  Google Scholar 

  34. Endo M, Hayashi T, Kim YA, Muramatsu H (2006) Development and application of carbon nanotubes. Jpn J Appl Phys 45:4883–4892. https://doi.org/10.1143/JJAP.45.4883

    Article  CAS  Google Scholar 

  35. Popov VN (2004) Carbon nanotubes: properties and application. Mat Sci Eng R 43:61–102. https://doi.org/10.1016/j.mser.2003.10.001

    Article  CAS  Google Scholar 

  36. Feng D, Gu ZY, Li JR, Jiang HL, Wei Z, Zhou HC (2012) Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chem Int Ed 51:10307–10310. https://doi.org/10.1002/anie.201204475

    Article  CAS  Google Scholar 

  37. Krajewski M, Malolepszy A, Stobinski L, Lewinska S, Slawska-Waniewska A, Tokarczyk M, Kowalski G, Borysiuk J, Wasik D (2015) Preparation and characterization of hematite-multiwall carbon nanotubes nanocomposite. J Supercond Nov Magn 28:901–904. https://doi.org/10.1007/s10948−014−2794−7

    Article  CAS  Google Scholar 

  38. Aghayan M, Mahmoudi A, Sohrabi S, Dehghanpour S, Nazaric K, Mohammadian-Tabrizi N (2019) Micellar catalysis of an iron (III)-MOF: enhanced biosensing characteristics. Anal Methods 11:3175–3187. https://doi.org/10.1039/C9AY00399A

    Article  CAS  Google Scholar 

  39. Yao B, Peng C, Zhang W, Zhang Q, Niu J, Zhao J (2015) A novel Fe (III) porphyrin-conjugated TiO2 visible-light photocatalyst. Appl Catal B Environ 174–175:77–84. https://doi.org/10.1016/j.apcatb.2015.02.030

    Article  CAS  Google Scholar 

  40. Yu G, Song X, Zheng S, Zhao Q, Yana D, Zhao J (2018) A facile and sensitive tetrabromobisphenol-A sensor based on biomimetic catalysis of a metal-organic framework: PCN-222(Fe). Anal Methods 10:4275–4281. https://doi.org/10.1039/C8AY00831K

    Article  CAS  Google Scholar 

  41. Zhao B, Song J, Fang T, Liu P, Jiao Z, Zhang H, Jiang Y (2012) Hydrothermal method to prepare porous NiO nanosheet. Mater Lett 67:24–27. https://doi.org/10.1016/j.matlet.2011.09.057

    Article  CAS  Google Scholar 

  42. Tan X, Yu C, Zhao C, Huang H, Yao X, Han X, Guo W, Cui S, Huang H, Qiu J (2019) Restructuring of Cu2O to Cu2O@Cu-Metal-organic frameworks for selective electrochemical reduction of CO2. ACS Appl Mater Interf 11:9904–9910. https://doi.org/10.1021/acsami.8b19111

    Article  CAS  Google Scholar 

  43. Maurin A, Robert M (2016) Noncovalent immobilization of a molecular iron−based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water. J Am Chem Soc 138:2492–2495. https://doi.org/10.1021/jacs.5b12652

    Article  CAS  Google Scholar 

  44. Lieber CM, Lewis NS (1984) Catalytic reduction of carbon dioxide at carbon electrodes modified with cobalt phthalocyanine. J Am Chem Soc 106:5033–5034. https://doi.org/10.1021/ja00329a082

    Article  CAS  Google Scholar 

  45. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854. https://doi.org/10.1038/nmat2297

    Article  CAS  Google Scholar 

  46. Li M, Zhao Z, Cheng T, Fortunelli A, Chen CY, Yu R, Zhang Q, Gu L, Merinov BV, Lin Z (2016) Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354:1414–1419. https://doi.org/10.1126/science.aaf9050

    Article  CAS  Google Scholar 

  47. Zhou J, Dou Y, Zhou A, Shu L, Chen Y, Li JR (2018) Layered metal−organic framework−derived metal oxide carbon nanosheet arrays for catalyzing the oxygen evolution reaction. ACS Energy Lett 3:1655–1661. https://doi.org/10.1021/acsenergylett.8b00809

    Article  CAS  Google Scholar 

  48. Li D, Liu T, Yan Z, Zhen L, Liu J, Wu J, Feng Y (2020) MOF-derived Cu2O/Cu nanospheres anchored in nitrogen-doped hollow porous carbon framework for increasing the selectivity and activity of electrochemical CO2-to-formate conversion. ACS Appl Mater Interfaces 12:7030–7037. https://doi.org/10.1021/acsami.9b15685

    Article  CAS  Google Scholar 

  49. Hori Y (2008) Modern aspects of electrochemistry, vol 42. Springer, New York. doi:https://doi.org/10.1007/978-0-387-49489-0

  50. Zhang S, Kang P, Ubnoske S, Brennaman MK, Song N, House RL, Glass JT, Meyer TJ (2014) Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen–doped carbon nanomaterials. J Am Chem Soc 136:7845–7848. https://doi.org/10.1021/ja5031529

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 21671169), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, Six Talent Peaks Project in Jiangsu Province (No. 2017-XNY-043), and the Foundation from the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Xia Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, LW., Qian, SL., Dong, BX. et al. The boosting of electrocatalytic CO2-to-CO transformation by using the carbon nanotubes-supported PCN-222(Fe) nanoparticles composite. J Mater Sci 57, 526–537 (2022). https://doi.org/10.1007/s10853-021-06592-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06592-9

Navigation