Skip to main content
Log in

A review on erosion-reducing additive materials to extend the lifespan of gun barrels

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The erosion and wear of gun barrels have always been engineering problems that affect the operational effectiveness of weapons. First, this report briefly introduces the formation of net cracks and turtle cracks that occur on the bore surface during launch. Then, influencing factors, including thermal factors, chemical factors, and mechanical wear, are analyzed, as well as their control measures. Based on these factors, erosion-reducing additive materials are comprehensively discussed. First, the early development of ERAMs, such as polyurethane, TiO2, and talc, is reviewed. Then, current ERAMs are discussed; they include improved lining TiO2-paraffin materials, polysiloxane materials, life extension repair materials, boron nitride nanomaterials, microcapsule composite particles, multifunctional carbonates, nitrogen-rich compounds, rare earth oxides and other metal oxides. The above discussion covers chemical composition, preparation method, micromorphology, erosion-reducing performance, combustion completeness, and compatibility with propellant. In addition, the erosion-reducing mechanism and principles of formula design are discussed. Finally, comprehensive analysis shows that ERAM technology is an effective way to slow erosion and wear with high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Roque A (2019) US Army outlines $228 million investment to develop strategic long-range cannon. Jane’s Def Wkly 56(13):10–10

    Google Scholar 

  2. Cranny-Evans S, Zhirohov M (2019) Ranged weapons: Ukrainian Artillery adapts to the modern battlefield. Jane’s Int Def Rev 52:30–32

    Google Scholar 

  3. Foss CF (2018) Fire support: french army plans boost artillery firepower. Jane’s Int def rev 51:26–27

    Google Scholar 

  4. Chevalier O, Liennard M, Langlet A, Guilmard Y, Mansion M, Bailly P (2017) Dynamic of tubes crossed by high speed projectiles, influence of tube and weapon geometry on accuracy and dispersion. In: Proceed 30th Int Symp Ballistics, Long Beach, California, US, pp. 950–960

  5. Jaiswal G, Shaikh MAR, Shelar SD, Ramavath V, Roy S (2020) RDX based enhanced energy propellant for tank gun ammunition. Propellants, Explos, Pyrotech 45(3):472–479. https://doi.org/10.1002/prep.201900250

    Article  CAS  Google Scholar 

  6. Sun N, Tian CH, Xiao ZG (2016) Enrichment of fluorinated nano-TiO2 composite on the surface of propellants. In: Proceed 29th Int Symp Ballistics, Edinburgh, Scotland, UK, pp. 9–13

  7. Hu CB, Zhang XB (2018) Performance variation of a transient dynamic fluid-structure interaction system in different life stages and methods for maintaining the performance. Appl Therm Engin 130:1012–1021. https://doi.org/10.1016/j.applthermaleng.2017.11.075

    Article  Google Scholar 

  8. Xu YF, Shan CL, Liu PK, Wang YW, Xu J (2020) Review of the research of failure mechanism and life prediction method of gun barrel. J Gun Launch Control 41(3):89–94+101. Doi:https://doi.org/10.19323/j.issn.1673-6524.2020.03.018 [In Chinese]

  9. Putti AA, Chopade MR, Chaudhari PE (2016) A review on gun barrel erosion. Int J Curr Engin Technol 4:231–235

    Google Scholar 

  10. Li HG, Yan J, Du SG, Cui HP (2012) Research advance of erosion inhibitor technology in gun barrel. J Gun Launch and Control 4:103–106. https://doi.org/10.3969/j.issn.1673-6524.2012.04.025 (In Chinese)

    Article  Google Scholar 

  11. Zhang J, Zhao L, Wang X, Dong ZH (2020) Mechanism analysis of internal defects in barrels. Fire Control Command Control 45(5):8–14. https://doi.org/10.3969/j.issn.1002-0640.2020.05.002 (In Chinese)

    Article  Google Scholar 

  12. Wei D, Wang QL, Yan WR, Zhang JB, Zhao YH, Liu Y (2020) Research progress on reducing erosivity of gun barrel. Chin J Explos Propellants 43(4):351–361. https://doi.org/10.14077/j.issn.1007-7812.201904033 ([In Chinese])

    Article  Google Scholar 

  13. Tian GJ (2003) Researches on the wear and erosion of bore and its influence to interior ballistic. PhD Dissertation, Nanjing University of Science and Technology. Doi:https://doi.org/10.7666/d.y625485 [In Chinese]

  14. Jovanovic D, Stojanovic B, Janjic R (2016) Capacity for improving tribological characteristics of barrel interior line on a gun. J Balkan Tribol Assoc 22(1):17–27

    Google Scholar 

  15. Gong CH, Yang YF, Huang LH (2014) Modern artillery bore erosion wear mechanism and control measures. J Sichuan Ordnance 35(11):127–129. https://doi.org/10.11809/scbgxb2014.11.035 ([In Chinese])

    Article  Google Scholar 

  16. Yuan DW, Zhou GL, Li XY, Bian JN, Nie WB (2020) Simulation study on rifling stress in the process of bullet engraving into barrel. J Sichuan Ordnance 41(8):30–35. https://doi.org/10.11809/bqzbgcxb2020.08.007 ([In Chinese])

    Article  Google Scholar 

  17. Ding CJ, Liu N, Zhang XY (2017) A mesh generation method for worn gun barrel and its application in projectile-barrel interaction analysis. Finite Elem Anal Des 124:22–32. https://doi.org/10.1016/j.finel.2016.10.003

    Article  Google Scholar 

  18. Nath H, Phanikumar G (2016) Microstructural, magnetic and electrical properties of Ni2FeGa heusler alloys. Trans Indian Inst Met 69(7):1389–1396. https://doi.org/10.1007/s12666-015-0691-9

    Article  CAS  Google Scholar 

  19. Lin SS, Yan J, Yu WB, Li HG, Du SG (2016) Research status of gun barrel erosion and inhibitor mitigation mechanism. J Gun Launch Control 37(1):92–96. https://doi.org/10.3969/j.issn.1673-6524.2016.01.020 ([In Chinese])

    Article  Google Scholar 

  20. Lawton B (2001) Thermo-chemical erosion in gun barrels. Wear 251:827–838. https://doi.org/10.1016/S0043-1648(01)00738-4

    Article  Google Scholar 

  21. Senturk A, Isik H, Evci C (2016) Thermo-mechanically coupled thermal and stress analysis of interior ballistics problem. Int J Therm Sci 104:39–53. https://doi.org/10.1016/j.ijthermalsci.2015.12.019

    Article  Google Scholar 

  22. Chen YC, Wang F, Li P, Wu S (2013) Prevention of chromium-plated rifling land destruction of gun using propellant with nanometer wear additive. Trans Beijing Inst Technol 33(8):852–856+865. DOI: https://doi.org/10.3969/j.issn.1001-0645.2013.08.016 [In Chinese]

  23. Johnston IA (2005) Understanding and predicting gun barrel erosion. Defence Science and Technology Organisation, Australian, pp. 1–51. DSTO–TR–1757

  24. Lawton B (1984) Thermal and chemical effects of gun barrel wear. In: 18th International Symposium on Ballistics, Orlando, US

  25. Kimura J (1996) Hydrogen gas erosion of high-energy LOVE propellant. In: Proceed 16th Int Symp Ballistics, San Francisco, California, US

  26. Sherrick K (2012) Corrosion- and erosion-based materials selection for the M242 autocannon barrel in a marine operating environment. MA Dissertation, Rensselaer Polytechnic Institute

  27. Hirvonen JK, Demaree JD, Marble DK, Conroy P, Leveritt C, Montgomery J, Bujanda A (2005) Gun barrel erosion studies utilizing ion beams. Surf Coat Technol 196(1–3):167–171. https://doi.org/10.1016/j.surfcoat.2004.08.218

    Article  CAS  Google Scholar 

  28. Cote PJ, Rickard C (2000) Gas-metal reaction products in the erosion of chromium-plated gun bores. Wear 241(1):17–25. https://doi.org/10.1016/s0043-1648(00)00313-6

    Article  CAS  Google Scholar 

  29. Feng GT (2017) Study on flow field with gas leakage and temperature field of chromium-plating barrel. PhD Dissertation, Nanjing University of Science and Technology [In Chinese]

  30. Su B (2020) Preparation and properties of Ta-W coating by magnetron sputtering on gun steel. MA Dissertation, Shengyang Ligong University. Doi: https://doi.org/10.27323/d.cnki.gsgyc.2020.000113 [In Chinese]

  31. Li JK (2016) N/A. MA Dissertation, Nanjing University of Science and Technology. Doi:https://doi.org/10.7666/d.Y3046084 [In Chinese]

  32. Sopok S, O’Hara P (1996) Chemical factors associated with environmental assisted cracking of generic gun systems. In: Proceed 32nd AIAA/ASME/ASEE Joint Propuls Conf, Lake Buena Vista, FL, pp. 1–12. Doi:https://doi.org/10.2514/6.1996-3237

  33. Li XL (2020) Research on the deterioration behavior of the barrel material of the rapid-fire weapon and the degradation mechanism of ballistic performance. PhD Dissertation, University of Science and Technology Beijing. Doi:https://doi.org/10.26945/d.cnki.gbjku.2020.000260 [In Chinese

  34. Mendonca-Filho LG, Rodrigues RLB, Rosato R, Galante EBF, Nichele J (2019) Combined evaluation of nitrocellulose-based propellants: toxicity, performance, and erosivity. J Energ Mater 37(3):293–308. https://doi.org/10.1080/07370652.2019.1606867

    Article  CAS  Google Scholar 

  35. Alkidas AC, Morris SO, Summerfield M (1976) Erosive effects of high pressure combustion gases on steel alloys. J Spacecr Rockets 13(8):461–465. https://doi.org/10.2514/3.57110

    Article  CAS  Google Scholar 

  36. Krishnan GN, Scott A, Wood B, Cubicciotti D (1979) Effect of transient combustion species on 4340 steel. US Army Research Office. pp. 1–42. ARO-15181.1-MS

  37. Yi HJ (2016) N/A. MA Dissertation, Nanjing University of Science and Technology. Doi:https://doi.org/10.7666/d.Y3045617 [In Chinese]

  38. Shi LX. (2016) N/A. MA Dissertation, Nanjing University of Science and Technology. Doi:https://doi.org/10.7666/d.Y3045796 [In Chinese]

  39. Shen C, Zhou KD, Lu Y, Li JS (2019) Modeling and simulation of bullet-barrel interaction process for the damaged gun barrel. Def Technol 15(6):972–986. https://doi.org/10.1016/j.dt.2019.07.009

    Article  Google Scholar 

  40. Dahiwale SM, Bhongale C, Roy S, Navle PB, Asthana SN (2019) Studies on ballistic parameters of di-butyl phthalate-coated triple base propellant used in large caliber artillery gun ammunition. J Energetic Mater 37(1):98–109. https://doi.org/10.1080/07370652.2018.1542467

    Article  CAS  Google Scholar 

  41. Han H (2010) N/A. MA Dissertation, Nanjing University of Science and Technology. Doi:https://doi.org/10.7666/d.y1697714 [In Chinese]

  42. Hordijk AC, Leurs O (2006) Gun barrel erosion-comparison of conventional and LOVA gun propellants. J press vessel technol 128(2):246–250. https://doi.org/10.1115/1.2172956

    Article  CAS  Google Scholar 

  43. Cha KU, Ahn SI, Oh YJ (2020) Method for designing rifling rate to increase lifespan of the gun barrel. KR Patent, 102076826B1.

  44. Sun J, Chen GS, Qian LF, Liu TS (2017) Analysis of gun barrel rifling twist. AIP Conf Proceed 1839:1–11. https://doi.org/10.1063/1.4982461

    Article  Google Scholar 

  45. Cleary MM (2019) Rifled ammunition system. USA Patent, 20190271519A1.

  46. Men XD, Tao FH, Gan L, LI Y, Duan WR, Liu YF (2019) Erosion of different propellants on the cobalt-based alloy coating for gun barrel. In: Proceed 31st Int Symp Ballistics , Hyderabad, India, pp. 383–391. Doi:https://doi.org/10.12783/ballistics2019/33072

  47. Wright DW (2017) Gun barrel manufacturing methods. USA Patent, 9695489B1.

  48. Pragya S, Shikha A, Janakarajan R, Kantesh B (2018) Protective trivalent Cr-based electrochemical coatings for gun barrels. J Alloys Compd 768:1039–1048. https://doi.org/10.1016/j.jallcom.2018.07.170

    Article  CAS  Google Scholar 

  49. Yao SR, Chen YC (2018) Research progress of preparation technology of inner coating of artillery gun barrel. Hot Working Technol 47(6):41–44+48. Doi:https://doi.org/10.14158/j.cnki.1001-3814.2018.06.010 [In Chinese]

  50. Men XD, Tao FH, Gan L, Li Y, Liu Z (2019) Erosion and wear resistance of Cr3C2-NiCr composite ceramic coating for gun barrel. In: Proceed 11th Int Conf High-Perform Ceramics, Kunming, China, pp. 25–29. DOI:https://doi.org/10.1088/1757-899X/678/1/012075

  51. Hu M (2019) Research on the properties of Cr coatings prepared by three methods on the surface of gun barrel material. PhD Dissertation, North University of China. [In Chinese]

  52. Xu YF, Shan CL, Liu PK, Wen GZ, Wang YW (2019) Review of the research on gun barrel life-span prolongation. J Gun Launch and Control 40(4):90–95. https://doi.org/10.19323/j.issn.1673-6524.2019.04.019 ([In Chinese])

    Article  Google Scholar 

  53. Ekansh C (2020) Numerical investigation of dynamic interaction with projectile and harmonic behaviour for T-finned machine gun barrels. Def Technol 16(2):460–469. https://doi.org/10.1016/j.dt.2019.07.018

    Article  Google Scholar 

  54. Jozsef DT (2018) Gun barrel with ceramic liner. HU Patent, 1800317A2

  55. Mogle J (2016) Systems and methods for composite gun barrel. USA Patent, 20160363402A1

  56. Pyka D, Bocian M, Jamroziak K, Kosobudzki M, Kulisiewicz M (2018) Concept of a gun barrel based on the layer composite reinforced with continuous filament. AIP Conf Proc 2078(1):020043. https://doi.org/10.1063/1.5092046

    Article  CAS  Google Scholar 

  57. Bhetiwal A, Kashikar S, Markale H, Gade SV (2017) Effect of yield criterion on stress distribution and maximum safe pressure for an autofrettaged gun barrel. Def Sci J 67(5):504–509. https://doi.org/10.14429/dsj.67.10636

    Article  Google Scholar 

  58. Hussain N, Qayyum F, Pasha RA, Shah M (2020) Development of multi-physics numerical simulation model to investigate thermo-mechanical fatigue crack propagation in an autofrettaged gun barrel. Def Technol (in press). https://doi.org/10.1016/j.dt.2020.09.005

    Article  Google Scholar 

  59. Perl M, Saley T (2017) Swage and hydraulic autofrettage impact on fracture endurance and fatigue life of an internally cracked smooth gun barrel Part I—the effect of overstraining. Def Technol 182:372–385. https://doi.org/10.1016/j.engfracmech.2017.05.022

    Article  Google Scholar 

  60. Perl M, Saley T (2017) Swage and hydraulic autofrettage impact on fracture endurance and fatigue life of an internally cracked smooth gun barrel Part II—the combined effect of pressure and overstraining. Def Technol 182:386–399. https://doi.org/10.1016/j.engfracmech.2017.05.023

    Article  Google Scholar 

  61. Liang XW (2019) Analysis of stress state on autofrettaged barrel of small caliber artillery. MA Dissertation, North University of China [In Chinese]

  62. Sun N (2018) Preparation and properties of organic-inorganic nanocomposites and their applications in energetic materials. PhD Dissertation, Nanjing University of Science and Technology [In Chinese]

  63. Fan W, Tian T, Cui YF, Zhou SJ (2019) Reveal thermal insulation mechanism of the new type erosion reducing materials of (Sm1-XGdX)2Zr2O7 by detonation spraying. Mater Rep 33(Z2):134–137+153. [In Chinese]

  64. Li BS, Ren YL (1991) N/A. Ordnance Mater Sci Engin pp. 25–30. Doi: https://doi.org/10.14024/j.cnki.1004-244x.1991.01.004 [In Chinese]

  65. Joseph WG (1958) Use of foamed polyurethane in decreasing erosion in guns. Technical Report No.2520. Picatinny Arsenal, Diver, NJ

  66. Ren YL (1988) N/A. J Proj, Rockets, Missiles and Guidance pp. 95–100. Doi:cnki:sun:djzd.0.1988–03–008 [In Chinese]

  67. Katz D (1968) Wear reduction additives. USA Patent, 3362328.

  68. Li Q, Wei L, Cui YF, Zheng S, Yan WR, Wang F, Liu SW, Li ZC et al (2020) Study on preparation and properties of a new type of silicon ablation inhibitor. Chin J Explos Propellants 43(2):225–229. https://doi.org/10.14077/j.issn.1007-7812.201812010 ([In Chinese])

    Article  CAS  Google Scholar 

  69. Lenchitz C, Velicky RW, Bottei LA, Silvestro G (1965) Some aspects of the erosion reducing characteristics of the titanium oxide-wax additive. Technology Memorandum No.1869, Picatinny Arsenal, Dover, NJ.

  70. Picard JP, Trask RL (1958) A new barrel erosion reducer. J Spacecr Rockets 5:1487

    Article  Google Scholar 

  71. Picard JP (1968) Erosion reducer. USA Patent, 3392670.

  72. Ren YL, Geng SG, Bao XT, Li BS, Guo YR (1986) N/A. Surf Technol pp. 10–16. doi:https://doi.org/10.16490/j.cnki.issn.1001-3660.1986.01.004 [In Chinese]

  73. Liang XY, Ren YL (1997) Study on erosion reduction and useful properties of inhibitor. Ordnance Mater Sci Engin 20(3):24–29 ([In Chinese])

    Google Scholar 

  74. Liang XY (2000) N/A. MA Dissertation, Southwest Jiaotong University. Doi:https://doi.org/10.7666/d.y344952 [In Chinese]

  75. Ward JR (1983) N/A. J Ballistics 7(3):1819

  76. Geng SG (1988) N/A. Ordnance Mater Sci Engin pp. 7–12. Doi:https://doi.org/10.14024/j.cnki.1004-244x.1988.07.002 [In Chinese]

  77. Bracuti AJ, Bottei LA, Davis R (1983) Potential multipurpose additives: flash-erosion suppressant pp. 1–21. https://www.nstl.gov.cn/paper_detail.html?id=50ae41b741b5e4effc6a7eded08c0216.

  78. Boncompain T (2010) Gun tube wear reduction for 105mm artillery. Ordnance and Tactical Systems, Canada

    Google Scholar 

  79. Xu HL, Zhang J, Jiang H, Liu Y, Zhu X, Xu YH, Zhao MB (2018) N/A. Def Manuf Technol pp. 44–46. Doi:https://doi.org/10.3969/j.issn.1674-5574.2018.01.009 [In Chinese]

  80. Lai GQ, Xing SM (2010) Youjigui chanpin hecheng gongyi ji yingyong 1st ed. Chemical Industry Press, Beijing, pp 312–314 [In Chinese]

  81. Lai GQ, Xing SM (2010) Youjigui chanpin hecheng gongyi ji yingyong 1st ed. Chemical Industry Press, Beijing, pp 1–6 [In Chinese]

  82. Garcia-Garrido C, Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM (2016) Combined TGA-MS kinetic analysis of multistep processes. thermal decomposition and ceramification of polysilazane and polysiloxane preceramic polymers. Phys Chem Chem Phys 18(42):29348–29360. https://doi.org/10.1039/c6cp03677e

    Article  CAS  Google Scholar 

  83. Jiang KZ, Ni Y, Wu JR, Qiu HY, La GQ (2009) Analysis of condensed and addition type of silicon rubbers by online pyrolysis gas chromatography-mass spectrometry. Chin J Analytical Chem 37(4):589–592. https://doi.org/10.3321/j.issn:0253-3820.2009.04.023 ([In Chinese])

    Article  CAS  Google Scholar 

  84. Yang D (2013) Silicone rubber based insulation material and its thermochemical ablation mechanism. PhD Dissertation, National University of Defense Technology [In Chinese]

  85. Ji YP, Zhang YX, Lu XM, Zhou C (2010) Study on prescription designed of the new type inhibitor. Chin J Explos Propellants 4:39–41. https://doi.org/10.14077/j.issn.1007-7812.2000.04.014 ([In Chinese])

    Article  Google Scholar 

  86. Zhao YH, Xiao ZG, Yan WR, Yan GH, Liang L (2020) Interior ballistic performance prediction of gun propellant charge based on closed-bomb test. Chin J Explos Propellants 43(1):81–84+89. Doi:https://doi.org/10.14077/j.issn.1007-7812.201901010 [In Chinese]

  87. Zheng S, Liu B, Liu SW, Wang F, Zhang YB, Yu HF, Han B, Li D (2011) Application of a new agent of low erosion in the small caliber weapon. Chin J Energ Mater 19(3):335–338. https://doi.org/10.3969/j.issn.1006-9941.2011.03.020 ([In Chinese])

    Article  CAS  Google Scholar 

  88. Li DY, Gao SZ, Luo CH, Yuan J, Gan L (2012) Research on renovating the abrasion and ablation of the gun barrel bore. J Gun Launch Control 1:47–50. https://doi.org/10.19323/j.issn.1673-6524.2012.01.012 ([In Chinese])

    Article  Google Scholar 

  89. Wei HZ, Gao SZ, Li DY, Ma KB, Wang XL, Luo CH, Qi FJ, Xu XY (2016) Applied research on the life prolonged and restored materials in gun tube weapon. Acta Armamentarii 38(3):440–446. https://doi.org/10.3969/j.issn.1000-1093.2017.03.004 ([In Chinese])

    Article  Google Scholar 

  90. Simic D, Stojanovic DB, Kojovic A, Dimic M, Totovski L, Uskokovic PS, Aleksic R (2016) Inorganic fullerene-like IF-WS2/PVB nanocomposites of improved thermo-mechanical and tribological properties. Mater Chem Phys 184:335–344. https://doi.org/10.1016/j.matchemphys.2016.09.060

    Article  CAS  Google Scholar 

  91. Lazic D, Simic D, Samolov A, Jovanovic D (2017) Properties of standard polymeric and water-based coatings for military camouflage protection with addition of inorganic fullerene-like tungsten disulphide (IF-WS2) nanoparticles. Sci Technol Rev 67(1):38–44. https://doi.org/10.5937/STR1701038L

    Article  CAS  Google Scholar 

  92. Raina A, Anand A (2018) Effect of nanodiamond on friction and wear behavior of metal dichalcogenides in synthetic oil. Appl Nanosci 8:581–591. https://doi.org/10.1007/s13204-018-0695-y

    Article  CAS  Google Scholar 

  93. Rezgui N, Simic D, Boulahbal C, Mickovic D (2020) Fullerene-like nanoparticles of WS2 as a promising protection from erosive wear of gun bore nozzles. Curr Nanosci 16(1):62–70. https://doi.org/10.2174/1573413715666181217115448

    Article  CAS  Google Scholar 

  94. Han PF, Martens W, Waclawik ER, Sarina ZhuHY (2018) Metal nanoparticle photocatalysts: synthesis, characterization, and application. Part Part Syst Charact 35(6):1700489. https://doi.org/10.1002/ppsc.201700489

    Article  CAS  Google Scholar 

  95. Wu DG, Fan J (2014) High capacity, high power, bullet robust lithium-ion polymer cells using nano Si or graphite negative for military conformal and UPS applications. In: Proceed 46th Power Sources Conf: Orlando, Florida, US, pp. 9–12

  96. Pandey AK, Nandgaonkar M, Pandey U, Suresh S (2018) Experimental investigation of the effect of karanja oil biodiesel with cerium oxide nano particle fuel additive on lubricating oil tribology and engine wear in a heavy duty 38.8L,780 HP military CIDI diesel engine. In: Proceed SAE 2018 Int Powertrains, Fuels and Lubricants Meeting, Heidelberg, Germany, pp. 17–19

  97. Chen YC, Song QZ, Wang JZ (2007) Thermochemical erosion of propellant with nanometer additives. Acta Armamentarii 28(3):329–331. https://doi.org/10.3321/j.issn:1000-1093.2007.03.016 ([In Chinese])

    Article  CAS  Google Scholar 

  98. Song QZ, Wang JZ, Chen YC (2007) Research on technology for increasing the service life of gun barrel by adding nanomaterial to the propellant. Trans Beijing Inst Technol 27(8):662–665. https://doi.org/10.3969/j.issn.1001-0645.2007.08.002 ([In Chinese])

    Article  Google Scholar 

  99. Matter PH, Holt CT, Beachy MG (2015) Method for producing BN-based nanoparticles and products therefrom. USA Patent, 20150232336A1

  100. Manning T, Field R, Klingaman K, Fair M, Bolognini J, CrownoverAdam RCP, Panchal V et al (2016) Innovative boron nitride-doped propellants. Def Technol 12(2):69–80. https://doi.org/10.1016/j.dt.2015.10.001

    Article  Google Scholar 

  101. Vishnu KV, Chatterjee NS, Ajeeshkumar KK, Lekshmi RGK, Tejpal CS, Mathew S, Ravishankar CN (2017) Microencapsulation of sardine oil: application of vanillic acid grafted chitosan as a bio-functional wall material. Carbohydr Polyms 174:540–548

    Article  CAS  Google Scholar 

  102. Mohammadi B, Najafi SF, Khoshraj MJ, Ranjbar H (2018) Microencapsulation of butyl palmitate in polystyrene-co-methyl methacrylate shell for thermal energy storage application. Iranian J Chem Chem Eng 37(2–3):187–194

    CAS  Google Scholar 

  103. Silva J, Cardoso K, Silva J, Kawachi E, Nagamachi M, Ferrao L (2020) ADN recrystallization and microencapsulation with HTPB by simple coacervation. Propellants, Explos, Pyrotech 45(5):705–713. https://doi.org/10.1002/prep.201900392

    Article  CAS  Google Scholar 

  104. Wang ZS, Xu FM, Zhang HX (1995) N/A 1st ed. Ordnance Industry Press, Beijing, pp. 20–25. ISBN:9787800388750 [In Chinese]

  105. Wang ZS, He WD, Xu FM (2006) N/A 1st ed. Beijing Institute of Technology Press, Beijing. ISBN:9787564006457 [In Chinese]

  106. Hu SB (2008) Study on microcapsule technology of bore-wear reducing additive. MA Dissertation, Nanjing University of Science and Technology. DOI:https://doi.org/10.7666/d.y1367082 [In Chinese]

  107. Li HG, Yan J, Wang MQ, Meng SH, Du SG (2015) Microcapsulation of TiO2 precursor and its performance as inhibitor of erosion. J Inorg Mater 30(1):47–52. https://doi.org/10.15541/jim20140205 ([In Chinese])

    Article  CAS  Google Scholar 

  108. Yan J, Li HG, Meng SH, Du SG (2015) Preparation and characterization of TiO2 microspheres by microcapsules template. J Synthetic Cryst 44(11):3306–3310. https://doi.org/10.16553/j.cnki.issn1000-985x.2015.11.072 ([In Chinese])

    Article  CAS  Google Scholar 

  109. Lin SS, Yan J, Li HG, Du SG (2017) Surface modification of metatitanic acid powders and its application on barrel erosion inhibitor. Appl Chem Ind 46(4):671–673. https://doi.org/10.3969/j.issn.1671-3206.2017.04.016 ([In Chinese])

    Article  Google Scholar 

  110. Lin SS, Du SG, Lu YL, Zhi T (2019) Preparation and characterization of a novel inhibitor for propellant. J Ordnance Equip Engin 40(4):26–29. https://doi.org/10.11809/bqzbgcxb2019.04.007 ([In Chinese])

    Article  Google Scholar 

  111. Lin SS, Du SG, Lu YL, Wang HY (2020) Preparation and characterization of urea-formaldehyde/TiO2 composite microsphere erosion inhibitor. Chin J Energ Mater 28(6):484–490. https://doi.org/10.11943/CJEM2019175 ([In Chinese])

    Article  Google Scholar 

  112. Shahzad KMS, Shehzad F, Al-Harthi MA (2016) Graphene/layered double hydroxides nanocomposites: a review of recent progress in synthesis and application. Carbon 104:241–252. https://doi.org/10.1016/j.carbon.2016.03.057

    Article  CAS  Google Scholar 

  113. Sun N, Zhao X, Xiao ZG (2015) Synthesis and characterization of hollow TiO2 particles coated with polyimide brushes by click chemistry. J Nanosci Nanotechnol 15(6):4676–4681. https://doi.org/10.1166/jnn.2015.10488

    Article  CAS  Google Scholar 

  114. Sun N, Xiao ZG (2016) Paraffin wax-based phase change microencapsulation embedded with silicon nitride nanoparticles for thermal energy storage. J Mater Sci 51:8550–8561. https://doi.org/10.1007/s10853-016-0116-0

    Article  CAS  Google Scholar 

  115. Sun N, Xiao ZG (2017) Synthesis and performances of phase change materials microcapsules with a polymer/BN/TiO2 hybrid shell for thermal energy storage. Energy Fuels 31(9):10186–10195. https://doi.org/10.1021/acs.energyfuels.7b01271

    Article  CAS  Google Scholar 

  116. Sun N, Xiao ZG (2018) Robust microencapsulated silicone oil with a hybrid shell for reducing propellant erosion. Propellants, Explos, Pyrotech 43(2):151–155. https://doi.org/10.1002/prep.201700262

    Article  CAS  Google Scholar 

  117. Sun N, Xiao ZG (2017) Improvement of the thermostability of silicone oil/polystyrene microcapsules by embedding TiO2/Si3N4 nanocomposites as outer shell. J Mater Sci 52(18):10800–10813. https://doi.org/10.1007/s10853-017-1272-6

    Article  CAS  Google Scholar 

  118. Sun N, Xiao ZG (2017) Effects of an organic-inorganic nanocomposite additive on the combustion and erosion performance of high energy propellants containing RDX. Propellants Explos Pyrotech 42(11):1252–1260. https://doi.org/10.1002/prep.201700155

    Article  CAS  Google Scholar 

  119. Bracuti AJ, Field R (2002) Wear reducing additives. US Army armament research, development and engineering center, New Jerser, pp. 1–16. ARWEC-TR-02006

  120. Wanninger P (2008) Combustible propellant charge casing. USA Patent, 7341003B2

  121. Lavoie J, Petre CF, Dubois C (2018) Erosivity and performance of nitrogen-rich propellants. Propellants, Explos, Pyrotech 43(9):879–892. https://doi.org/10.1002/prep.201700272

    Article  CAS  Google Scholar 

  122. Lavoie J, Petre CF, Paradis PY, Dubois C (2016) Burning rates and thermal behavior of bistetrazole containing gun propellants. Propellants Explos Pyrotech 42(2):149–157. https://doi.org/10.1002/prep.201600091

    Article  CAS  Google Scholar 

  123. Walsh CM, Knott CD, Leveritt CS (2006) Reduced erosion additive for a propelling charge. USA Patent, 6984275B1

  124. Boisson D, Cayzac R (2007) Thermo-mechanical computation in a 120-mm chromium-coated gun barrel with apfs-ds with wear-reducing additives. In: Proceed 23rd Int Symp Ballistics, Tarragona, Spain, pp. 433–440.

  125. Conroy PJ, Leveritt CS, Hirvonen JK, Demaree JD (2006) The role of nitrogen in gun tube wear and erosion. US Army Research Laboratory, Aberdeen Proving Ground, pp. 1–28, MD ARL-TR-3795.

Download references

Acknowledgements

The authors would like to express appreciation to 52 Institute of China North Industries Group for their help in conducting this research summary. The authors would also like to thank leaders and colleagues for their guidance and writing assistance. On a personal note, the corresponding author would like to thank Zhang XJ for her help with daily chores and childcare when there were conflicts with work and family.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8841 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, W., Gao, P. A review on erosion-reducing additive materials to extend the lifespan of gun barrels. J Mater Sci 56, 19767–19790 (2021). https://doi.org/10.1007/s10853-021-06558-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06558-x

Navigation