Skip to main content
Log in

Effect of austenite transformation degree on microstructure and fracture toughness of high-strain pipeline steel

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to clarify the relationships among austenite transformation degree, microstructure and fracture toughness, the simulated inter-critical heat-affected zones (ICHAZ) of high-strain pipeline steel were prepared with five different austenitizing degrees (0%, 20%, 50%, 80% and 100%). The microstructure and the fracture toughness of simulated ICHAZ specimens were investigated. It was found that the microstructure evolution and fracture toughness of ICHAZ were closely related to the austenite transformation degree. In partially austenitized ICHAZ, the fresh bainite and ferrite could break the original structure and decreased effective grain size. The fine grains with disorderly arranged M–A constituents could improve fracture toughness of partially austenitized ICHAZ. In contrast, the linearly aligned M–A constituents in 0%-austenitized region and the chain-distributed ones in 100%-austenitized region could lead to deterioration of fracture toughness. Furthermore, the excellent fracture toughness of partially austenitized ICHAZ was related to the high density of high-angle grain boundaries (HAGBs), homogeneous distribution of local strain as well as the high percentage of small-deformed grains (SDGs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Drumond GP, Pasqualino IP, Pinheiro BC, Estefen SF (2018) Pipelines, risers and umbilicals failures: A literature review. Ocean Eng 148:412–425. https://doi.org/10.1016/j.oceaneng.2017.11.035

    Article  Google Scholar 

  2. Liu B, Liu XJ, Zhang H (2009) Strain-based design criteria of pipelines. J Loss Prev Process Ind 22:884–888. https://doi.org/10.1016/j.jlp.2009.07.010

    Article  Google Scholar 

  3. Han B, Wang ZY, Zhao HL, Jing HY, Wu ZZ (2012) Strain-based design for buried pipelines subjected to landslides. Pet Sci 9:236–241. https://doi.org/10.1007/s12182-012-0204-y

    Article  Google Scholar 

  4. Deng W, Gao XH, Qin XM, Zhao DW, Du LX (2011) Microstructure and properties of an X80 pipeline steel Manufactured by untraditional TMCP. Adv Sci Lett 4:1088–1092. https://doi.org/10.1166/asl.2011.1341

    Article  CAS  Google Scholar 

  5. Zuo XR, Zhou ZY (2015) Study of pipeline steels with acicular ferrite microstructure and ferrite-bainite dual-phase microstructure. Mater Res 18:36–41. https://doi.org/10.1590/1516-1439.256813

    Article  Google Scholar 

  6. Xiao FR, Liao B, Shan YY, Qiao GY, Zhong Y, Zhang CL, Yang K (2006) Challenge of mechanical properties of an acicular ferrite pipeline steel. Mater Sci Eng A 431:41–52. https://doi.org/10.1016/j.msea.2006.05.029

    Article  CAS  Google Scholar 

  7. Liu CY, Di XJ, Chen CX, Guo XJ (2015) A bainite transformation kinetics model and its application to X70 pipeline steel. J Mater Sci 50:5079–5090. https://doi.org/10.1007/s10853-015-9060-7

    Article  CAS  Google Scholar 

  8. Jia L, Liu Y, Jia S, Li B, Liu Q (2018) Softening of heat affected zone of high-strain pipeline steel. Mater Sci Technol 26:37–44. https://doi.org/10.11951/j.issn.1005-0299.20170130

    Article  Google Scholar 

  9. Eroglu M, Aksoy M (2000) Effect of initial grain size on microstructure and toughness of intercritical heat-affected zone of a low carbon steel. Mat Sci Eng A 286:289–297. https://doi.org/10.1016/S0921-5093(00)00801-7

    Article  Google Scholar 

  10. Davis CL, King JE (1994) Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: part I. Fractographic evidence. Metall Mater Trans A 25:563–573. https://doi.org/10.1007/bf02651598

    Article  Google Scholar 

  11. Goto S, Kami C, Kawamura S (2015) Effect of alloying elements and hot-rolling conditions on microstructure of bainitic-ferrite/martensite dual phase steel with high toughness. Mater Sci Eng A 648:436–442. https://doi.org/10.1016/j.msea.2015.09.093

    Article  CAS  Google Scholar 

  12. Liu ZQ, Miyamoto G, Yang ZG, Furuhara T (2013) Volume fractions of proeutectoid ferrite/pearlite and their dependence on prior austenite grain size in hypoeutectoid Fe-Mn-C alloys. Metall Mater Trans A 44:5456–5467. https://doi.org/10.1007/s11661-013-1885-6

    Article  CAS  Google Scholar 

  13. Maropoulos S, Karagiannis S, Ridley N (2008) The effect of austenitising temperature on prior austenite grain size in a low-alloy steel. Mater Sci Eng A 483:735–739. https://doi.org/10.1016/j.msea.2006.11.172

    Article  CAS  Google Scholar 

  14. Di XJ, Tong M, Li CN, Zhao C, Wang DP (2019) Microstructural evolution and its influence on toughness in simulated inter-critical heat affected zone of large thickness bainitic steel. Mater Sci Eng A 743:67–76. https://doi.org/10.1016/j.msea.2018.11.070

    Article  CAS  Google Scholar 

  15. Li Z, Zhao X, Shan D (2018) Impact toughness of subzones in the intercritical heat-affected zone of low-carbon bainitic steel. Mater 11:959. https://doi.org/10.3390/ma11060959

    Article  CAS  Google Scholar 

  16. Velthuis SGET, Dijk NHV, Rekveldt MT, Sietsma J, Zwaag SVD (2000) A three-dimensional model for the development of the microstructure in steel during slow cooling. Mater Sci Eng A 277:218–228. https://doi.org/10.1016/S0921-5093(99)00531-6

    Article  Google Scholar 

  17. Luo X, Chen X, Wang T, Pan SW, Wang ZD (2018) Effect of morphologies of martensite–austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel. Mater Sci Eng A710:192–199. https://doi.org/10.1016/j.msea.2017.10.079

    Article  CAS  Google Scholar 

  18. Shim DH, Lee T, Lee J, Lee H, Yoo JY, Lee CS (2017) Increased resistance to hydrogen embrittlement in high-strength steels composed of granular bainite. Mater Sci Eng A 700:473–480. https://doi.org/10.1016/j.msea.2017.06.043

    Article  CAS  Google Scholar 

  19. Zhou YL, Jia T, Zhang XJ, Liu ZY, Misra RDK (2015) Investigation on tempering of granular bainite in an offshore platform steel. Mater Sci Eng A 626:352–361. https://doi.org/10.1016/j.msea.2014.12.074

    Article  CAS  Google Scholar 

  20. Li XD, Ma XP, Subramanian SV, Misra RDK, Shang CJ (2015) Structure-property-fracture mechanism correlation in heat-affected zone of X100 ferrite-bainite pipeline steel. Metall Mater Trans E 2:1–11. https://doi.org/10.1007/s40553-014-0036-3

    Article  CAS  Google Scholar 

  21. Yang W, Tang JC, Ing YS, Ma CC (2001) Transient dislocation emission from a crack tip. J Mech Phys Solids 49:2431–2453. https://doi.org/10.1016/S0022-5096(01)00046-1

    Article  Google Scholar 

  22. Singh R, Mahajan DK (2019) Role of stress triaxiality on ductile versus brittle fracture in pre-cracked FCC single crystals: an atomistic study. Modell Simul Mater Sci Eng 27:5. https://doi.org/10.1088/1361-651X/ab1cb1

    Article  Google Scholar 

  23. Niu J, Qi LH, Liu YL, Ma L, Feng YR, Zhang JX (2009) Tempering microstructure and mechanical properties of pipeline steel X80. Trans Nonferrous Met Soc China 19:S573–S578. https://doi.org/10.1016/S1003-6326(10)60111-2

    Article  CAS  Google Scholar 

  24. Qiao ZX, Liu YC, Yu LM, Gao ZM (2009) Formation mechanism of granular bainite in a 30CrNi3MoV steel. J Alloys Compd 475:560–564. https://doi.org/10.1016/j.jallcom.2008.07.110

    Article  CAS  Google Scholar 

  25. Li H, Liang JL, Feng YL, Huo DX (2014) Microstructure transformation of X70 pipeline steel welding heat-affected zone. Rare Met 33:493–498. https://doi.org/10.1007/s12598-014-0344-x

    Article  CAS  Google Scholar 

  26. Zhang MX, Kelly PM (1998) Determination of carbon content in bainitic ferrite and carbon distribution in austenite by using CBKLDP. Mater Charact 40:159–168. https://doi.org/10.1016/S1044-5803(98)00005-9

    Article  CAS  Google Scholar 

  27. Di XJ, Cai L, Xing XX, Chen CX, Xue ZK (2015) Microstructure and mechanical properties of intercritical heat-affected zone of X80 pipeline steel in simulated in-service welding. Acta Metall Sin-Engl 28:883–891. https://doi.org/10.1007/s40195-015-0272-2

    Article  CAS  Google Scholar 

  28. Yang XC, Di XJ, Liu XG, Wang DP, Li CN (2019) Effects of heat input on microstructure and fracture toughness of simulated coarse-grained heat affected zone for HSLA steels. Mater Charact. https://doi.org/10.1016/j.matchar.2019.109818

    Article  Google Scholar 

  29. Zhang JC, Di HS, Deng YG, Misra RDK (2015) Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel. Mater Sci Eng A 627:230–240. https://doi.org/10.1016/j.msea.2015.01.006

    Article  CAS  Google Scholar 

  30. Di XJ, An X, Cheng FJ, Wang DP, Guo XJ, Xue ZK (2016) Effect of martensite-austenite constituent on toughness of simulated inter-critically reheated coarse-grained heat-affected zone in X70 pipeline steel. Sci Technol Weld Join 21:366–373. https://doi.org/10.1080/13621718.2015.1118814

    Article  CAS  Google Scholar 

  31. Li XD, Fan YR, Ma XP, Subramanian SV, Shang CJ (2015) Influence of Martensite-Austenite constituents formed at different intercritical temperatures on toughness. Mater Des 67:457–463. https://doi.org/10.1016/j.matdes.2014.10.028

    Article  CAS  Google Scholar 

  32. Gao ZJ, Li JY, Feng ZH, Wang YD (2019) Influence of hot rolling on the microstructure of lean duplex stainless steel 2101. Inter J Miner Metall Mater 26:1266–1273. https://doi.org/10.1007/s12613-019-1841-6

    Article  CAS  Google Scholar 

  33. Li XC, Zhao JX, Wang JL, Wang XL, Liu SL, Shang CJ (2020) Effect of boundaries on toughness in high-strength low-alloy steels from the view of crystallographic misorientation. Mater Lett. https://doi.org/10.1016/j.matlet.2019.126841

    Article  Google Scholar 

  34. Li XD, Ma XP, Subramanian SV, Shang CJ, Misra RDK (2014) Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel. Mater Sci Eng A 616:141–147. https://doi.org/10.1016/j.msea.2014.07.100

    Article  CAS  Google Scholar 

  35. Calcagnotto M, Ponge D, Demir E, Raabe D (2010) Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A 527:2738–2746. https://doi.org/10.1016/j.msea.2010.01.004

    Article  CAS  Google Scholar 

  36. Wang YY, Park DY, Li L (2017) Microstructural analysis of fracture in heat-affected zone of two X70 pipeline steel weldments. Can Metall Q 57:129–139. https://doi.org/10.1080/00084433.2017.1390643

    Article  CAS  Google Scholar 

  37. Becker R, Needleman A, Suresh S, Tvergaard V, Vasudevan AK (1989) An analysis of ductile failure by grain boundary void growth. Acta Metall. 37:99–120. https://doi.org/10.1016/0001-6160(89)90270-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2018YFC0310305), the Science and Technology Program Project of Tianjin (No. 18ZXCLGX00060), the National Natural Science Foundation of China (Nos. 52074191 and 51804217) and the State Key Laboratory of Metal Material for Marine Equipment and Application (No. SKLMEA-K201904).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinjie Di or Chengning Li.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Di, X., Li, C. et al. Effect of austenite transformation degree on microstructure and fracture toughness of high-strain pipeline steel. J Mater Sci 56, 13827–13840 (2021). https://doi.org/10.1007/s10853-021-06149-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06149-w

Navigation