Skip to main content

Advertisement

Log in

Facile synthesis of silver decorated reduced graphene oxide@zinc oxide as ternary nanocomposite: an efficient photocatalyst for the enhanced degradation of organic dye under UV–visible light

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ternary combination of metal and metal oxide with reduced graphene oxide could be a novel potential photocatalyst towards highly efficient degradation of organic dyes under solar radiation. Herein, the novel ternary nanocomposite of silver nanoparticles with reduced graphene oxide and zinc oxide nanorods (Ag-rGO@ZnONR) were synthesized via in situ homogeneous coating of silver nanoparticles (Ag NPs) onto pre-assembled thermally reduced graphene oxide (rGO) encapsulated ZnO nanorods (ZnONR). The nanocomposite showed excellent aptitude towards the photodegradation of 2-chlorophenol (2-CP) under solar light irradiation. The Ag-rGO@ZnONR nanocomposite showed excellent UV–visible light harvesting due to the engineered reduced bandgap, and the Schottky barrier at the metal–semiconductor interface is expected to promote charge separation as also revealed by the optical calculations. The production of superoxide anions \(^{ \cdot } {\text{O}}_{2}^{ - }\) and hydroxyl radicals \((^{ \cdot } {\text{OH}})\) acting as substantial reducing and oxidizing agents and further π − π stacking interactions with the aromatic ring of 2-CP provided an ultimate foundation for its 100% degradation. The photocatalyst showed high reproducibility, and 94% efficiency was observed even after three cycles. XPS chemical state analysis of C1s, O1s, Zn2p, and Ag3d confirm the variation of C =C (sp2), C–O, O= C–OH, and localization of Ag nanoparticles with rGO by confiscating the oxygen-comprising functional moieties which may be the possible reason for the enhanced photodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Kumar R, Laskar MA, Hewaidy IF, Barakat MA (2019) Modified adsorbents for removal of heavy metals from aqueous environment: a review. Earth Syst Environ 3:83–93. https://doi.org/10.1007/s41748-018-0085-3

    Article  Google Scholar 

  2. Rovira J, Domingo JL (2019) Human health risks due to exposure to inorganic and organic chemicals from textiles: a review. Environ Res 168:62–69. https://doi.org/10.1016/j.envres.2018.09.027

    Article  CAS  Google Scholar 

  3. Ali S, Rizwan M, Shakoor MB, Jilani A, Anjum R (2020) High sorption efficiency for As(III) and As(V) from aqueous solutions using novel almond shell biochar. Chemosphere 243:125330. https://doi.org/10.1016/j.chemosphere.2019.125330

    Article  CAS  Google Scholar 

  4. Ran X, Duan L, Chen X, Yang X (2018) Photocatalytic degradation of organic dyes by the conjugated polymer poly(1,3,4-oxadiazole)s and its photocatalytic mechanism. J Mater Sci 53:7048–7059. https://doi.org/10.1007/s10853-018-2025-x

    Article  CAS  Google Scholar 

  5. MalathiMadhavanAshokkumarArunachalam MJMP (2018) A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Appl Catal A 555:47–74. https://doi.org/10.1016/j.apcata.2018.02.010

    Article  CAS  Google Scholar 

  6. Bharath G, Anwer S, Mangalaraja RV, Alhseinat E, Banat F, Ponpandian N (2018) Sunlight-Induced photochemical synthesis of Au nanodots on α-Fe(2)O(3)@Reduced graphene oxide nanocomposite and their enhanced heterogeneous catalytic properties. Sci Rep 8:5718. https://doi.org/10.1038/s41598-018-24066-y

    Article  CAS  Google Scholar 

  7. Lu D, Zelekew OA, Abay AK, Huang Q, Chen X, Zheng Y (2019) Synthesis and photocatalytic activities of a CuO/TiO2 composite catalyst using aquatic plants with accumulated copper as a template. RSC Adv 9:2018–2025. https://doi.org/10.1039/C8RA09645G

    Article  CAS  Google Scholar 

  8. Mudassir MA, Hussain SZ, Jilani A, Zhang H, Ansari TM, Hussain I (2019) Magnetic hierarchically macroporous emulsion-templated poly(acrylic acid)–iron oxide nanocomposite beads for water remediation. Langmuir 35:8996–9003. https://doi.org/10.1021/acs.langmuir.9b01121

    Article  CAS  Google Scholar 

  9. Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sust Energy Rev 81:536–551. https://doi.org/10.1016/j.rser.2017.08.020

    Article  CAS  Google Scholar 

  10. Schneider J, Matsuoka M, Takeuchi M et al (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986. https://doi.org/10.1021/cr5001892

    Article  CAS  Google Scholar 

  11. Jilani A, Othman MHD, Ansari MO et al (2019) Structural and optical characteristics, and bacterial decolonization studies on non-reactive RF sputtered Cu–ZnO@ graphene based nanoparticles thin films. J Mater Sci 54:6515–6529. https://doi.org/10.1007/s10853-019-03343-9

    Article  CAS  Google Scholar 

  12. Cao S, Wang H, Li H, Chen J, Zang Z (2020) Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr 2 perovskite solar cells. Chem Eng J 394:124903. https://doi.org/10.1016/j.cej.2020.124903

    Article  CAS  Google Scholar 

  13. Wang H, Cao S, Yang B et al (2020) NH4Cl-modified ZnO for high-performance CsPbIBr 2 Perovskite solar cells via low-temperature process. Solar RRL 4:1900363. https://doi.org/10.1002/solr.201900363

    Article  CAS  Google Scholar 

  14. Wang H, Zhang P, Zang Z (2020) High performance CsPbBr 3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer. Appl Phys Lett 116:162103. https://doi.org/10.1063/5.0005464

    Article  CAS  Google Scholar 

  15. Zang Z (2018) Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films. Appl Phys Lett 112:042106. https://doi.org/10.1063/1.5017002

    Article  CAS  Google Scholar 

  16. Mishra YK, Adelung R (2018) ZnO tetrapod materials for functional applications. Mater Today 21:631–651. https://doi.org/10.1016/j.mattod.2017.11.003

    Article  CAS  Google Scholar 

  17. Almoisheer N, Alseroury FA, Kumar R, Almeelbi T, Barakat MA (2019) Synthesis of graphene oxide/silica/carbon nanotubes composite for removal of dyes from wastewater. Earth Syst Environ 3:651–659. https://doi.org/10.1007/s41748-019-00109-w

    Article  Google Scholar 

  18. Putri LK, Ong W-J, Chang WS, Chai S-P (2015) Heteroatom doped graphene in photocatalysis: a review. Appl Surf Sci 358:2–14. https://doi.org/10.1016/j.apsusc.2015.08.177

    Article  CAS  Google Scholar 

  19. Rafique S, Roslan NA, Abdullah SM et al (2019) UV-ozone treated graphene oxide/ PEDOT:PSS bilayer as a novel hole transport layer in highly efficient and stable organic solar cells. Org Electron 66:32–42. https://doi.org/10.1016/j.orgel.2018.12.005

    Article  CAS  Google Scholar 

  20. Xue B, Zou Y (2018) High photocatalytic activity of ZnO–graphene composite. J Colloid Interface Sci 529:306–313. https://doi.org/10.1016/j.jcis.2018.04.040

    Article  CAS  Google Scholar 

  21. Raizada P, Sudhaik A, Singh P (2019) Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review. Mater Sci Energy Technol 2:509–525. https://doi.org/10.1016/j.mset.2019.04.007

    Article  Google Scholar 

  22. Prasad C, Tang H, Bahadur I (2019) Graphitic carbon nitride based ternary nanocomposites: from synthesis to their applications in photocatalysis—a recent review. J Mol Liq 281:634–654. https://doi.org/10.1016/j.molliq.2019.02.068

    Article  CAS  Google Scholar 

  23. Awazu K, Fujimaki M, Rockstuhl C et al (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130:1676–1680. https://doi.org/10.1021/ja076503n

    Article  CAS  Google Scholar 

  24. Chen X, Zheng Z, Ke X et al (2010) Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chem 12:414–419. https://doi.org/10.1039/B921696K

    Article  CAS  Google Scholar 

  25. Hsueh Y-H, Hsieh C-T, Chiu S-T, Tsai P-H, Liu C-Y, Ke W-J (2019) Antibacterial property of composites of reduced graphene oxide with nano-silver and zinc oxide nanoparticles synthesized using a microwave-assisted approach. Int J Mol Sci 20:5394. https://doi.org/10.3390/ijms20215394

    Article  CAS  Google Scholar 

  26. Meng A, Shao J, Fan X, Wang J, Li Z (2014) Rapid synthesis of a flower-like ZnO/rGO/Ag micro/nano-composite with enhanced photocatalytic performance by a one-step microwave method. RSC Adv 4:60300–60305. https://doi.org/10.1039/C4RA09695A

    Article  CAS  Google Scholar 

  27. Raj Pant H, Pant B, Joo Kim H et al (2013) A green and facile one-pot synthesis of Ag–ZnO/RGO nanocomposite with effective photocatalytic activity for removal of organic pollutants. Ceram Int 39:5083–5091. https://doi.org/10.1016/j.ceramint.2012.12.003

    Article  CAS  Google Scholar 

  28. Yokomizo Y, Krishnamurthy S, Kamat PV (2013) Photoinduced electron charge and discharge of graphene–ZnO nanoparticle assembly. Catal Today 199:36–41. https://doi.org/10.1016/j.cattod.2012.04.045

    Article  CAS  Google Scholar 

  29. Jilani A, Othman MHD, Ansari MO et al (2017) Facile spectroscopic approach to obtain the optoelectronic properties of few-layered graphene oxide thin films and their role in photocatalysis. New J Chem 41:14217–14227. https://doi.org/10.1039/C7NJ03614K

    Article  CAS  Google Scholar 

  30. Saini P, Sharma R, Chadha N (2017) Determination of defect density, crystallite size and number of graphene layers in graphene analogues using X-ray diffraction and Raman spectroscopy. Indian J Pure Appl Phys 55:625–629

    Google Scholar 

  31. Mishra SK, Tripathi SN, Choudhary V, Gupta BD (2014) SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens Actuators B Chem 199:190–200. https://doi.org/10.1016/j.snb.2014.03.109

    Article  CAS  Google Scholar 

  32. Dehimi M, Touam T, Chelouche A et al (2015) Effects of low Ag doping on physical and optical waveguide properties of highly oriented Sol-Gel ZnO thin films. Adv Condens Matter Phys 2015:740208. https://doi.org/10.1155/2015/740208

    Article  CAS  Google Scholar 

  33. Basu S, Hazra SK (2017) Graphene-noble metal nano-composites and applications for hydrogen sensors. C 3:29. https://doi.org/10.3390/c3040029

  34. Zeferino RS, Flores MB, Pal U (2011) Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles. J Appl Phys 109:014308. https://doi.org/10.1063/1.3530631

    Article  CAS  Google Scholar 

  35. Jilani A, Abdel-wahab MS, Al-ghamdi AA, Dahlan As, Yahia IS (2016) Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures. Phys B 481:97–103. https://doi.org/10.1016/j.physb.2015.10.038

  36. Jilani A, Othman MHD, Ansari MO et al (2018) A simple route to layer-by-layer assembled few layered graphene oxide nanosheets: optical, dielectric and antibacterial aspects. J Mol Liq 253:284–296

    Article  CAS  Google Scholar 

  37. Gomathi M, Rajkumar PV, Prakasam A (2018) Study of dislocation density (defects such as Ag vacancies and interstitials) of silver nanoparticles, green-synthesized using Barleria cristata leaf extract and the impact of defects on the antibacterial activity. Results Phys 10:858–864. https://doi.org/10.1016/j.rinp.2018.08.011

    Article  Google Scholar 

  38. Thool GS, Singh AK, Singh RS, Gupta A, Susan MABH (2014) Facile synthesis of flat crystal ZnO thin films by solution growth method: a micro-structural investigation. J Saudi Chem Soc 18:712–721. https://doi.org/10.1016/j.jscs.2014.02.005

    Article  CAS  Google Scholar 

  39. Abdel-wahab MS, Jilani A, Yahia IS, Al-Ghamdi AA (2016) Enhanced the photocatalytic activity of Ni-doped ZnO thin films: morphological, optical and XPS analysis. Superlattices Microstruct 94:108–118. https://doi.org/10.1016/j.spmi.2016.03.043

    Article  CAS  Google Scholar 

  40. Lv W, Sun F, Tang D-M et al (2011) A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J Mater Chem 21:9014–9019. https://doi.org/10.1039/C1JM10400D

    Article  CAS  Google Scholar 

  41. Yang Y, Rigdon W, Huang X, Li X (2013) Enhancing graphene reinforcing potential in composites by hydrogen passivation induced dispersion. Sci Rep 3:2086. https://doi.org/10.1038/srep02086

    Article  Google Scholar 

  42. Abid PS, Islam SS, Mishra P, Ahmad S (2018) Reduced graphene oxide (rGO) based wideband optical sensor and the role of temperature, defect states and quantum efficiency. Sci Rep 8:3537. https://doi.org/10.1038/s41598-018-21686-2

    Article  CAS  Google Scholar 

  43. Tai JY, Leong KH, Saravanan P, Sim LC (2018) E3S Web of conferences EDP sciences

  44. Kamarulzaman N, Kasim MF, Rusdi R (2015) Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale Res Lett 10:1034. https://doi.org/10.1186/s11671-015-1034-9

    Article  CAS  Google Scholar 

  45. Li J, Liu Y, Li H, Chen C (2016) Fabrication of g-C3N4/TiO2 composite photocatalyst with extended absorption wavelength range and enhanced photocatalytic performance. J Photochem Photobiol A 317:151–160. https://doi.org/10.1016/j.jphotochem.2015.11.008

    Article  CAS  Google Scholar 

  46. Mousavi M, Habibi-Yangjeh A, Abitorabi M (2016) Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. J Colloid Interface Sci 480:218–231. https://doi.org/10.1016/j.jcis.2016.07.021

    Article  CAS  Google Scholar 

  47. Basu M, Garg N, Ganguli AK (2014) A type-II semiconductor (ZnO/CuS heterostructure) for visible light photocatalysis. J Mater Chem A 2:7517–7525. https://doi.org/10.1039/C3TA15446G

    Article  CAS  Google Scholar 

  48. Chen Y, Huang W, He D, Situ Y, Huang H (2014) Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl Mater Interfaces 6:14405–14414

    Article  CAS  Google Scholar 

  49. Kim Y, Kang S (2011) Effect of particle size on photoluminescence emission intensity in ZnO. Acta Mater 59:3024–3031. https://doi.org/10.1016/j.actamat.2011.01.042

    Article  CAS  Google Scholar 

  50. Liqiang J, Yichun Q, Baiqi W et al (2006) Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells 90:1773–1787. https://doi.org/10.1016/j.solmat.2005.11.007

    Article  CAS  Google Scholar 

  51. Reddy G, Reddy J, Krishna RH, Gopal G (2017) Luminescence and spectroscopic investigations on Gd 3+ doped ZnO nanophosphor. J Asian Ceram Soc. https://doi.org/10.1016/j.jascer.2017.06.008

    Article  Google Scholar 

  52. Zhang X, Zhao Z, Zhang W et al (2016) Surface Defects Enhanced Visible Light Photocatalytic H2 Production for Zn-Cd-S Solid Solution. Small 12:793–801. https://doi.org/10.1002/smll.201503067

    Article  CAS  Google Scholar 

  53. Choudhury B, Dey M, Choudhury A (2014) Shallow and deep trap emission and luminescence quenching of TiO2 nanoparticles on Cu doping. Appl Nanosci 4:499–506. https://doi.org/10.1007/s13204-013-0226-9

    Article  CAS  Google Scholar 

  54. Alberto M, Luque-Alled JM, Gao L et al (2017) Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillers. J Membr Sci 526:437–449. https://doi.org/10.1016/j.memsci.2016.12.061

    Article  CAS  Google Scholar 

  55. Wang DH, Hu Y, Zhao JJ, Zeng LL, Tao XM, Chen W (2014) Holey reduced graphene oxide nanosheets for high performance room temperature gas sensing. J Mater Chem A 2:17415–17420. https://doi.org/10.1039/C4TA03740E

    Article  CAS  Google Scholar 

  56. Choi YR, Yoon Y-G, Choi KS et al (2015) Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon 91:178–187. https://doi.org/10.1016/j.carbon.2015.04.082

    Article  CAS  Google Scholar 

  57. Spilarewicz-Stanek K, Kisielewska A, Ginter J, Bałuszyńska K, Piwoński I (2016) Elucidation of the function of oxygen moieties on graphene oxide and reduced graphene oxide in the nucleation and growth of silver nanoparticles. RSC Adv 6:60056–60067. https://doi.org/10.1039/C6RA10483E

    Article  CAS  Google Scholar 

  58. John F, William F, Peter E, Kenneth D (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics. Inc., Minnesota

    Google Scholar 

  59. Tay YY, Li S, Sun CQ, Chen P (2006) Size dependence of Zn 2p 3/2 binding energy in nanocrystalline ZnO. Appl Phys Lett 88:173118. https://doi.org/10.1063/1.2198821

    Article  CAS  Google Scholar 

  60. Chang J, Ahmad MZ, Wlodarski W, Waclawik ER (2013) Self-assembled 3D ZnO porous structures with exposed reactive 0001 facets and their enhanced gas sensitivity. Sensors 13:8445–8460

    Article  CAS  Google Scholar 

  61. Kayaci F, Vempati S, Ozgit-Akgun C, Biyikli N, Uyar T (2014) Enhanced photocatalytic activity of homoassembled ZnO nanostructures on electrospun polymeric nanofibers: a combination of atomic layer deposition and hydrothermal growth. Appl Catal B 156–157:173–183. https://doi.org/10.1016/j.apcatb.2014.03.004

    Article  CAS  Google Scholar 

  62. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723. https://doi.org/10.1002/smll.200901934

    Article  CAS  Google Scholar 

  63. Yan Y, Al-Jassim MM, Wei S-H (2005) Oxygen-vacancy mediated adsorption and reactions of molecular oxygen on the \(\mathrm{ZnO}\,(10\overline{1}0)\) surface. Phys Rev B 72:161307. https://doi.org/10.1103/PhysRevB.72.161307

    Article  CAS  Google Scholar 

  64. Ziashahabi A, Prato M, Dang Z, Poursalehi R, Naseri N (2019) The effect of silver oxidation on the photocatalytic activity of Ag/ZnO hybrid plasmonic/metal-oxide nanostructures under visible light and in the dark. Sci Rep 9:11839. https://doi.org/10.1038/s41598-019-48075-7

    Article  CAS  Google Scholar 

  65. Ahmad M, Ahmad I, Ahmed E, Akhtar MS, Khalid NR (2020) Facile and inexpensive synthesis of Ag doped ZnO/CNTs composite: study on the efficient photocatalytic activity and photocatalytic mechanism. J Mol Liq 311:113326. https://doi.org/10.1016/j.molliq.2020.113326

    Article  CAS  Google Scholar 

  66. Yoo D-H, Cuong TV, Luan VH et al (2012) Photocatalytic performance of a Ag/ZnO/CCG multidimensional heterostructure prepared by a solution-based method. J Phys Chem C 116:7180–7184. https://doi.org/10.1021/jp210216w

    Article  CAS  Google Scholar 

  67. Mitra M, Ghosh A, Mondal A, Kargupta K, Ganguly S, Banerjee D (2017) Facile synthesis of aluminium doped zinc oxide-polyaniline hybrids for photoluminescence and enhanced visible-light assisted photo-degradation of organic contaminants. Appl Surf Sci 402:418–428. https://doi.org/10.1016/j.apsusc.2017.01.072

    Article  CAS  Google Scholar 

  68. Singh J, Satpati B, Mohapatra S (2017) Structural, optical and plasmonic properties of Ag-TiO2 hybrid plasmonic nanostructures with enhanced photocatalytic activity. Plasmonics 12:877–888. https://doi.org/10.1007/s11468-016-0339-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asim Jilani, Syed Zajif Hussain or Mohammad Omaish Ansari.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jilani, A., Hussain, S.Z., Ansari, M.O. et al. Facile synthesis of silver decorated reduced graphene oxide@zinc oxide as ternary nanocomposite: an efficient photocatalyst for the enhanced degradation of organic dye under UV–visible light. J Mater Sci 56, 7434–7450 (2021). https://doi.org/10.1007/s10853-021-05783-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05783-8

Navigation