Skip to main content
Log in

Synthesis of Pt-doped SnO2 flower-like hierarchical structure and its gas sensing properties to isopropanol

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An assembled three-dimensional hierarchical nanostructure based on the two-dimensional nanostructure can not only maintain the characteristics of two-dimensional materials such as the larger specific surface area, but also improve their stability. The unique structure of such nanostructures promotes gas diffusion and adsorption, making gas sensitivity more excellent. Therefore, it is necessary to study a reliable method for preparing them with an important application value. In this work, a Pt-doped SnO2 flowerlike hierarchical structure was synthesized using a simple solvothermal method. A series of characterizations was carried out using different test methods, and the results showed that the prepared material was a flowerlike hierarchical structure assembled from porous nanosheets. In order to explore the gas sensitivity performance of the samples with different doping ratios to isopropanol, we prepared undoped samples and samples with different Pt doping ratios. The experimental results showed that, compared with the undoped samples, the samples with the doping ratio of 2.0 exhibited excellent gas sensitivity to isopropanol. Also, the response reached 171 at 250 °C, which is approximately 11 times higher than that of the undoped samples. In addition, the doped samples showed good linear response, excellent selectivity and good stability. We also systematically explored the gas-sensitive mechanism of the Pt-SnO2 to isopropanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Poloju M, Jayababu N, Manikandan E, Ramana Reddy MV (2017) Enhancement of the isopropanol gas sensing performance of SnO2/ZnO core/shell nanocomposites. J Mater Chem C 5:2662

    CAS  Google Scholar 

  2. Chien PJ, Suzuki T, Tsujii M et al (2017) Bio-sniffer (gas-phase biosensor) with secondary alcohol dehydrogenase (S-ADH) for determination of isopropanol in exhaled air as a potential volatile biomarker. Biosens Bioelectron 91:341–346

    CAS  Google Scholar 

  3. Hu D, Han B, Deng S et al (2014) Novel mixed phase SnO2 nanorods assembled with SnO2 nanocrystals for enhancing gas-sensing performance toward isopropanol gas. J Phys Chem C 118:9832–9840

    CAS  Google Scholar 

  4. Perfecto TM, Zito CA, Volanti DP (2017) Design of nanostructured WO3·0.33H2O: Via combination of ultrasonic spray nozzle and microwave-assisted hydrothermal methods for enhancing isopropanol gas sensing at room temperature. CrystEngComm 19:2733–2738

    CAS  Google Scholar 

  5. Huang J, Wu Y, Gu C et al (2010) Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property. Sens Actuators B Chem 146:206–212

    CAS  Google Scholar 

  6. Huang J, Yang M, Gu C et al (2011) Hematite solid and hollow spindles: Selective synthesis and application in gas sensor and photocatalysis. Mater Res Bull 46:1211–1218

    CAS  Google Scholar 

  7. Qiao L, Bing Y, Wang Y et al (2017) Enhanced toluene sensing performances of Pd- loaded SnO2 cubic nanocages with porous nanoparticle-assembled shells. Sens Actuators B Chem 241:1121–1129

    CAS  Google Scholar 

  8. Yu H, Yang T, Zhao R et al (2015) Fast formaldehyde gas sensing response properties of ultrathin SnO2 nanosheets. RSC Adv 5:104574–104581

    CAS  Google Scholar 

  9. Wang Q, Yao N, An D et al (2016) Enhanced gas sensing properties of hierarchical SnO2 nanoflower assembled from nanorods via a one-pot template-free hydrothermal method. Ceram Int 42:15889–15896

    CAS  Google Scholar 

  10. Li YX, Guo Z, Su Y et al (2017) Hierarchical morphology-dependent gas-sensing performances of three-dimensional SnO2 nanostructures. ACS Sensors 2:102–110

    CAS  Google Scholar 

  11. Gao F, Li Y, Zhao Y et al (2017) Facile synthesis of flower-like hierarchical architecture of SnO2 nanoarrays. J Alloys Compd 703:354–360

    CAS  Google Scholar 

  12. Liu Y, Jiao Y, Zhang Z et al (2014) Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl Mater Interfaces 6:2174–2184

    CAS  Google Scholar 

  13. Wang TT, Ma SY, Cheng L et al (2015) Performance of 3D SnO2 microstructure with porous nanosheets for acetic acid sensing. Mater Lett 142:141–144

    CAS  Google Scholar 

  14. Xiao L, Shu S, Liu S (2015) A facile synthesis of Pd-doped SnO2 hollow microcubes with enhanced sensing performance. Sens Actuators B Chem 221:120–126

    CAS  Google Scholar 

  15. Xue D, Wang P, Zhang Z, Wang Y (2019) Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: A combined experimental and first-principle study. Sens Actuators B Chem 296:126710

    CAS  Google Scholar 

  16. Chu X, Wang J, Zhang J et al (2017) Preparation and gas-sensing properties of SnO2/graphene quantum dots composites via solvothermal method. J Mater Sci 52:9441–9451. https://doi.org/10.1007/s10853-017-1148-9

    Article  CAS  Google Scholar 

  17. Shu S, Wang M, Yang W, Liu S (2017) Synthesis of surface layered hierarchical octahedral-like structured Zn2SnO4/SnO2 with excellent sensing properties toward HCHO. Sens Actuators B Chem 243:1171–1180

    CAS  Google Scholar 

  18. Lin Z, Li N, Chen Z, Fu P (2017) The effect of Ni doping concentration on the gas sensing properties of Ni doped SnO2. Sens Actuators B Chem 239:501–510

    CAS  Google Scholar 

  19. Kou X, Xie N, Chen F et al (2018) Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sens Actuators B Chem 256:861–869

    CAS  Google Scholar 

  20. Zhang W, Zeng W, Miao B, Wang Z (2015) Effect of the sheet thickness of hierarchical SnO2 on the gas sensing performance. Appl Surf Sci 355:631–637

    CAS  Google Scholar 

  21. Sun P, Zhao W, Cao Y et al (2011) Porous SnO2 hierarchical nanosheets: hydrothermal preparation, growth mechanism, and gas sensing properties. CrystEngComm 13:3718–3724

    CAS  Google Scholar 

  22. Zhao C, Gong H, Lan W et al (2018) Facile synthesis of SnO2 hierarchical porous nanosheets from graphene oxide sacrificial scaffolds for high-performance gas sensors. Sens Actuators B Chem 258:492–500

    CAS  Google Scholar 

  23. Kou X, Wang C, Ding M et al (2016) Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties. Sens Actuators B Chem 236:425–432

    CAS  Google Scholar 

  24. Rao C, Liu R, Feng X et al (2018) Three-dimensionally ordered macroporous SnO2 -based solid solution catalysts for effective soot oxidation. Cuihua Xuebao/Chinese J Catal 39:1683–1694

    CAS  Google Scholar 

  25. Li N, Fan Y, Shi Y et al (2019) A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: synthesis, sensing performance and mechanism. Sens Actuators B Chem 294:106–115

    CAS  Google Scholar 

  26. Singh G, Singh RC (2017) Synthesis and characterization of Gd-doped SnO2 nanostructures and their enhanced gas sensing properties. Ceram Int 43:2350–2360

    CAS  Google Scholar 

  27. Bouras K, Rehspringer JL, Schmerber G et al (2014) Optical and structural properties of Nd doped SnO2 powder fabricated by the sol-gel method. J Mater Chem C 2:8235–8243

    CAS  Google Scholar 

  28. Ahmed A, Siddique MN, Ali T, Tripathi P (2019) Defect assisted improved room temperature ferromagnetism in Ce doped SnO2 nanoparticles. Appl Surf Sci 483:463–471

    CAS  Google Scholar 

  29. Wang W, Liu Y, Liu S (2020) SnO2 nanostructure with well-engineered crystal facets by Zn doping for chemical sensing applications. Cryst Growth Des 20(4):2742–2752

    CAS  Google Scholar 

  30. Singh G, Singh RC (2019) Synthesis, characterization and gas sensing properties of ga-doped SnO2 nanostructures. J Electron Mater 48:4478–4490

    CAS  Google Scholar 

  31. Inyawilert K, Wisitsoraat A, Liewhiran C et al (2019) H2 gas sensor based on PdOx-doped In2O3 nanoparticles synthesized by flame spray pyrolysis. Appl Surf Sci 475:191–203

    CAS  Google Scholar 

  32. Lian X, Li Y, Tong X et al (2017) Synthesis of Ce-doped SnO2 nanoparticles and their acetone gas sensing properties. Appl Surf Sci 407:447–455

    CAS  Google Scholar 

  33. Xing X, Xiao X, Wang L, Wang Y (2017) Highly sensitive formaldehyde gas sensor based on hierarchically porous Ag-loaded ZnO heterojunction nanocomposites. Sens Actuators B Chem 247:797–806

    CAS  Google Scholar 

  34. Zhang B, Fu W, Li H et al (2016) Synthesis and characterization of hierarchical porous SnO2 for enhancing ethanol sensing properties. Appl Surf Sci 363:560–565

    CAS  Google Scholar 

  35. Chu S, Yang C, Su X (2019) Synthesis of NiO hollow nanospheres via Kirkendall effect and their enhanced gas sensing performance. Appl Surf Sci 492:82–88

    CAS  Google Scholar 

  36. Lu W, Ding D, Xue Q et al (2018) Great enhancement of CH4 sensitivity of SnO2 based nanofibers by heterogeneous sensitization and catalytic effect. Sens Actuators B Chem 254:393–401

    CAS  Google Scholar 

  37. Ding M, Xie N, Wang C et al (2017) Enhanced NO2 gas sensing properties by Ag-doped hollow urchin-like In2O3 hierarchical nanostructures. Sens Actuators B Chem 252:418–427

    CAS  Google Scholar 

  38. Cai H, Liu H, Ni T et al (2019) Controlled synthesis of pt doped SnO2 mesoporous hollow nanospheres for highly selective and rapidly detection of 3-hydroxy-2-butanone biomarker. Front Chem 7:1–13

    Google Scholar 

  39. Liu L (2018) Liu S (2018) oxygen vacancies as an efficient strategy for promotion of low concentration SO2 gas sensing : the case of Au modified SnO2. ACS Sustain Chem Eng 6(10):13427–13434

    CAS  Google Scholar 

  40. Zhang G, Zhang S, Yang L et al (2013) La2O3-sensitized SnO2 nanocrystalline porous film gas sensors and sensing mechanism toward formaldehyde. Sens Actuators B Chem 188:137–146

    CAS  Google Scholar 

  41. Wan W, Li Y, Ren X et al (2018) 2D SnO2 nanosheets: Synthesis, characterization, structures, and excellent sensing performance to ethylene glycol. Nanomaterials 8(2):112

    Google Scholar 

  42. Liu J, Dai M, Wang T et al (2016) Enhanced Gas Sensing Properties of SnO2 Hollow Spheres Decorated with CeO2 Nanoparticles Heterostructure Composite Materials. ACS Appl Mater Interfaces 8:6669–6677

    CAS  Google Scholar 

  43. Zhang R, Gao S, Zhou T et al (2020) Facile preparation of hierarchical structure based on p-type Co3O4 as toluene detecting sensor. Appl Surf Sci 503:144167

    CAS  Google Scholar 

  44. Chen S, Zhao X, Xie H et al (2012) Photoluminescence of undoped and Ce-doped SnO2 thin films deposited by sol-gel-dip-coating method. Appl Surf Sci 258:3255–3259

    CAS  Google Scholar 

  45. Li R, Zhou Y, Sun M et al (2019) Gas sensing selectivity of oxygen-regulated SnO2 films with different microstructure and texture. J Mater Sci Technol 35:2232–2237

    Google Scholar 

  46. Xue Z, Cheng Z, Xu J et al (2017) Controllable evolution of dual defect Zni and VO associate-rich ZnO nanodishes with (0001) exposed facet and its multiple sensitization effect for ethanol detection. ACS Appl Mater Interfaces 9:41559–41567

    CAS  Google Scholar 

  47. Xu J, Xue Z, Qin N et al (2017) The crystal facet-dependent gas sensing properties of ZnO nanosheets: Experimental and computational study. Sens Actuators B Chem 242:148–157

    CAS  Google Scholar 

  48. Khoang ND, Trung DD, Van Duy N et al (2012) Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sens Actuators B Chem 174:594–601

    CAS  Google Scholar 

  49. Xu H, Li J, Fu Y et al (2020) Ag/Ag2S nanoparticle-induced sensitization of recovered sulfur-doped SnO2 nanoparticles for SO2 detection. ACS Appl Nano Mater 3:8075–8087

    CAS  Google Scholar 

  50. Wang S, Cao J, Cui W et al (2018) Oxygen vacancies and grain boundaries potential barriers modulation facilitated formaldehyde gas sensing performances for In2O3 hierarchical architectures. Sens Actuators B Chem 255:159–165

    CAS  Google Scholar 

  51. Liu X, Chen N, Han B et al (2015) Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity. Nanoscale 7:14872–14880

    CAS  Google Scholar 

  52. Wang Y, Hu D, Han B et al (2014) SnO2 nanorods based sensing material as an isopropanol vapor sensor. New J Chem 38:2443–2450

    Google Scholar 

  53. Li SH, Chu Z, Meng FF et al (2016) Highly sensitive gas sensor based on SnO2 nanorings for detection of isopropanol. J Alloys Compd 688:712–717

    CAS  Google Scholar 

  54. Sun H, Zhang C, Peng Y, Gao W (2019) Synthesis of double-shelled SnO2 hollow cubes for superior isopropanol sensing performance. New J Chem 43:4721–4726

    CAS  Google Scholar 

  55. Zhao Y, Li Y, Wan W et al (2018) Surface defect and gas-sensing performance of the well-aligned Sm-doped SnO2 nanoarrays. Mater Lett 218:22–26

    CAS  Google Scholar 

  56. Zhang B, Fu W, Meng X et al (2018) Synthesis of actinomorphic flower-like SnO2 nanorods decorated with CuO nanoparticles and their improved isopropanol sensing properties. Appl Surf Sci 456:586–593

    CAS  Google Scholar 

  57. Wang B, Wang Y, Lei Y et al (2016) Vertical SnO2 nanosheet@SiC nanofibers with hierarchical architecture for high-performance gas sensors. J Mater Chem C 4:295–304

    CAS  Google Scholar 

  58. Ma RJ, Zhao X, Zou X, Li GD (2018) Enhanced formaldehyde sensing performance at ppb level with Pt-doped nanosheet-assembled In2O3 hollow microspheres. J Alloys Compd 732:863–870

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21471120) and the Wuhan Institute of Technology Graduate Innovation Fund (CX2018124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantang Liu.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, W., Xiao, W. & Liu, S. Synthesis of Pt-doped SnO2 flower-like hierarchical structure and its gas sensing properties to isopropanol. J Mater Sci 56, 6095–6109 (2021). https://doi.org/10.1007/s10853-020-05655-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05655-7

Navigation