Skip to main content

Advertisement

Log in

Method for contact resistance determination of copper during fast temperature changes

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Contact resistance is crucial for temperature evolution at the fusion zone during resistance welding. In this paper, we introduce a new approach to determinate specific electrical contact resistance \({\rho }_{cont,el}\) for a constant contact pressure during dynamic temperature changes. We utilize total resistance curves from a specially designed experimental apparatus, implement them in a FEA-method and use this simulation method to separate material and contact resistance to calculate the specific contact resistance. The experimental setup is especially designed to achieve homogenous contact conditions during dynamic heating from real welding currents. We perform numerical and experimental validation of the developed determination method, including the usage of temperature measurements in the region of the fusion zone. Finally, we present pressure- and temperature-dependent data for specific contact resistance of Cu-ETP R200 (CW004A, soft) up to temperatures of 400 °C for two given contact pressures (64 MPa and 160 MPa) and a variation of contact surface properties. The data show a decrease in contact resistance with increasing temperature and pressure. Additionally, the properties of the surface show a strong influence on the contact resistance values.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Holm R (1967) Electric contacts. Springer, Berlin Heidelberg

    Book  Google Scholar 

  2. Kaars J, Mayr P, Koppe K (2016) Generalized dynamic transition resistance in spot welding of aluminized 22MnB5. Mater Design 106:139–145. https://doi.org/10.1016/j.matdes.2016.05.097

    Article  CAS  Google Scholar 

  3. Bolsinger C, Zorn M, Birke KP (2017) Electrical contact resistance measurements of clamped battery cell connectors for cylindrical 18650 battery cells. J Energy Storage 12:29–36. https://doi.org/10.1016/j.est.2017.04.001

    Article  Google Scholar 

  4. Tan W, Zhou Y, Kerr HW, Lawson S (2004) A study of dynamic resistance during small scale resistance spot welding. J Phys D Appl Phys 37:1998–2008. https://doi.org/10.1088/0022-3727/37/14/017

    Article  CAS  Google Scholar 

  5. Hamedi M, Atashparva M (2017) A review of electrical contact resistance modeling in resistance spot welding. Weld World 61:269–290. https://doi.org/10.1007/s40194-016-0419-4

    Article  Google Scholar 

  6. Song Q, Zhang W, Bay NO (2005) An experimental study determines the electrical contact resistance in resistance welding. Weld J 84:73–76

    Google Scholar 

  7. Vogler M, Sheppard S (1993) Electrical contact resistance under high loads and elevated temperatures. Weld J 9:231–238

    Google Scholar 

  8. Wehle M, Schmid F, Schmitz G (2017) Bedeutung des elektrischen Kontaktwiderstandes beim KE-Einpressschweißen. DVS Congress 2017, Düsseldorf:143–147

  9. Babu SS, Santella ML, Feng Z, Riemer BW, Cohron JW (2001) Empirical model of effects of pressure and temperature on electrical contact resistance of metals. Sci Technol Weld Join 6(3):126–132. https://doi.org/10.1179/136217101101538631

    Article  CAS  Google Scholar 

  10. Geslain E, Rogeon P, Pierre T, Pouvreau C, Cretteur L (2018) Coating effects on contact conditions in resistance spot weldability. J Mater Process Technol 253:160–167. https://doi.org/10.1016/j.jmatprotec.2017.11.009

    Article  CAS  Google Scholar 

  11. Pradille C, Bay F, Mocellin K (2010) An experimental study to determine electrical contact resistance. In: 2010 Proceedings of the 56th IEEE Holm conference on electrical contacts, Charleston, SC, pp 1–5. https://doi.org/10.1109/HOLM.2010.5619522

  12. Rogeon P, Carre P, Costa J, Sibilia G, Saindrenan G (2008) Characterization of electrical contact conditions in spot welding assemblies. J Mater Process Technol 195:117–124. https://doi.org/10.1016/j.jmatprotec.2007.04.127

    Article  CAS  Google Scholar 

  13. Song Q (2003) Testing and modeling of contact problems in resistance welding. PhD Dissertation, Tech University of Denmark, Denmark

  14. Greitmann MJ, Roos E (2011) Grundlegende Untersuchung zur Kontaktsituation beim Widerstandsschweißen von Kupferwerkstoffen: Schlussbericht. Forschungsvorhaben AiF-Nr. 15710 N/1 DVS-Nr. 04.046

  15. Lanier O (2011) Kontaktwiderstandsmodell für die Simulation des Fügens durch Widerstandserwärmen. PhD Dissertation, University of Stuttgart

  16. Galler M, Enzinger N, Sommitsch C (2010) The estimation of the contact interface temperature during resistance spot welding of zinc coated steels using numerical technique. ermittlung der kontaktoberflächen-temperatur während des widerstandspunktschweißens an einem feuerverzinkten stahl mittels numerischer verfahren. Mat-wiss u Werkstofftech 41:925–930. https://doi.org/10.1002/mawe.201000686

    Article  CAS  Google Scholar 

  17. Le Gloannec B, Doyen O, Pouvreau C, Doghri A, Poulon-Quintin A (2016) Numerical simulation of resistance upset welding in rod to tube configuration with contact resistance determination. J Mater Process Technol 238:409–422. https://doi.org/10.1016/j.jmatprotec.2016.07.042

    Article  Google Scholar 

  18. Ezenwa IC, Secco RA, Yong W, Pozzo M, Alfè D (2017) Electrical resistivity of solid and liquid Cu up to 5 GPa: decrease along the melting boundary. J Phys Chem Solids 110:386–393. https://doi.org/10.1016/j.jpcs.2017.06.030

    Article  CAS  Google Scholar 

  19. Blackwood AW, Casteras JE (1990) Properties and selection: nonferrous alloys and special-purpose materials. ASM Int 2:1110–1115. https://doi.org/10.31399/asm.hb.v02.9781627081627

    Article  Google Scholar 

  20. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. In: Proceedings 7th international symposium on Ballistics, The Hague, 19–21 April 1983, pp 541–547

  21. Systèmes D (2016) Abaqus Documentation. Dassault Systèmes Simulia Corp, United States

    Google Scholar 

  22. Ketzel M, Zschetzsche J, Füssel U (2016) Eliminieren von spannungsmessfehlern infolge hoher veränderlicher ströme beim Widerstandsschweißen. Schweißen und Schneiden 68(11):730–734

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

BL: Conceptualization; Methodology; Investigation; Formal analysis; Validation; Visualization; Writing—original draft; editing and discussion. SF: Conceptualization; Writing—review and editing. SP: Conceptualization; Writing—review and editing.

Corresponding author

Correspondence to Lukas Biele.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biele, L., Schaaf, P. & Schmid, F. Method for contact resistance determination of copper during fast temperature changes. J Mater Sci 56, 3827–3845 (2021). https://doi.org/10.1007/s10853-020-05490-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05490-w

Navigation